This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dyna...This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dynamic systems in various disciplines, including biological processes, heat transfer, and control systems. This study addresses first, second, and third-order nonlinear differential equations using Mathematica for data generation and graphing. The ADM, developed by George Adomian, uses Adomian polynomials to handle nonlinear terms, which can be computationally intensive. In contrast, VIM, developed by He, directly iterates the correction functional, providing a more straightforward and efficient approach. This study highlights VIM’s rapid convergence and effectiveness of VIM, particularly for nonlinear problems, where it simplifies calculations and offers direct solutions without polynomial derivation. The results demonstrate VIM’s superior efficiency and rapid convergence of VIM compared with ADM. The VIM’s minimal computational requirements make it practical for real-time applications and complex system modeling. Our findings align with those of previous research, confirming VIM’s efficiency of VIM in various engineering applications. This study emphasizes the importance of selecting appropriate methods based on specific problem requirements. While ADM is valuable for certain nonlinearities, VIM’s approach is ideal for many engineering scenarios. Future research should explore broader applications and hybrid methods to enhance the solution’s accuracy and efficiency. This comprehensive comparison provides valuable guidance for selecting effective numerical methods for differential equations in engineering.展开更多
This paper evaluates the skills of physical Parameterization schemes in simulating extreme rainfall events over Dar es Salaam Region, Tanzania using the Weather Research and Forecasting (WRF) model. The model skill is...This paper evaluates the skills of physical Parameterization schemes in simulating extreme rainfall events over Dar es Salaam Region, Tanzania using the Weather Research and Forecasting (WRF) model. The model skill is determined during the 21 December 2011 flooding event. Ten sensitivity experiments have been conducted using Cumulus, Convective and Planetary boundary layer schemes to find the best combination and optimize the WRF model for the study area for heavy rainfall events. Model simulation results were verified against observed data using standard statistical tests. The model simulations show encouraging and better statistical results with the combination of Kain-Fritsch cumulus parameterization scheme, Lin microphysics scheme and Asymmetric Convection Model 2 (ACM2) planetary boundary scheme than any other combinations of physical parameterization schemes over Dar es Salaam region.展开更多
Recent advances in technology provide countless innovative solutions and applications for supporting children with autism in educational learning and personal development. This result is an increasingly recognized nee...Recent advances in technology provide countless innovative solutions and applications for supporting children with autism in educational learning and personal development. This result is an increasingly recognized need to deal with new and unexpected risks and issues such as social exclusion. Diverse advanced technologies were aimed to support learning activity from different perspectives with multiple strategies. However, despite the significant amount of work and explored technology, several common risks pop up due to user’s vulnerability to diverse risks such as negative screen effects. Accordingly, there is still plenty of room for improvement in this regard. To address these vulnerabilities and gaps, this paper aims at identifying issues and challenges improving the technology applied for Autism Spectrum Disorders and autistics dedicated applications. It put forward requirements and design decisions supporting safe autistic dedicated interaction with regards to ISO31000 risk management process.展开更多
This paper explores the communicative acts deployed in covid-19 vaccination-related pictorials circulated on digital media platforms.Seven internet images were purposively sampled with a view to exploring their commun...This paper explores the communicative acts deployed in covid-19 vaccination-related pictorials circulated on digital media platforms.Seven internet images were purposively sampled with a view to exploring their communicative functions as well as their generic structure.The data,which were culled from the websites of the World Health Organisation,Centre for Disease Control,Pan American Health Organisation and Facebook,were subjected to qualitative analysis.The study deployed van Leeuwen’s Multimodal Discourse Analysis and Yuen’s Generic Structure Potential as theoretical anchor.The multimodal communicative acts are deployed for instructive,illustrative,informative,persuasive,inviting and advisory purposes.Categories such as Lead,Emblem,Announcement and Enhancer are compulsory in the data while Display,Tag and Call-and-Visit Information are non-compulsory elements.This can be catalogued as:‘Lead^(Display)^Emblem^(Announcement)^(Enhancer)^(Tag)^(Call-and-Visit Information)’.The study contends that the various semiotic resources deployed in the internet-circulated covid-19 images are used not only for informative and other communicative purposes but also to evoke attitudinal change towards and encourage widespread acceptance of the covid-19 vaccines.展开更多
In this paper, I consider two species feeding on limiting substrate in a chemostat taking into account some possible effects of each species on the other one. System of differential equations is proposed as model of t...In this paper, I consider two species feeding on limiting substrate in a chemostat taking into account some possible effects of each species on the other one. System of differential equations is proposed as model of these effects with general inter-specific density-dependent growth rates. Three cases were considered. The first one for a mutual inhibitory relationship where it is proved that at most one species can survive which confirms the competitive exclusion principle. Initial concentrations of species have great importance in determination of which species is the winner. The second one for a food web relationship where it is proved that under general assumptions on the dilution rate, both species persist for any initial conditions. Finally, a third case dealing with an obligate mutualistic relationship was discussed. It is proved that initial condition has a great importance in determination of persistence or extinction of both species.展开更多
Upgrading mechanical-dielectric features of ferrites through rare-earth yttrium(Y^(3+))doping provides feasibility to evolving high-frequency electronic devices.This paper reports the mechanical and dielectric propert...Upgrading mechanical-dielectric features of ferrites through rare-earth yttrium(Y^(3+))doping provides feasibility to evolving high-frequency electronic devices.This paper reports the mechanical and dielectric properties of Co_(0.5)Cu_(0.25)Zn_(0.25)Y_(x)Fe_(2-x)O_(4)ferrite nanoparticles labeled as CCZYF#0,CCZYF#1,CCZYF#2,CCZYF#3,CCZYF#4 and CCZYF#5 for x=0.0.0.02,0.04,0.06,0.08,and 0.1,respectively.The frequency and temperature dependence of dielectric parameters and co nductivity of all CCZYF nanoferrites are well discussed.The nanoferrite CCZYF#5 has the highest dielectric constant(enhancing ratio 170%)and the highest conductivity(enhancing ratio 7125.81%)compared with the undoped sample.Nyquist plots of all CCZYF nano ferrites manifest two arcs;the main reasons for the dielectric process are the grain boundaries and bulk grains.All impedance parameters were determined,which showed the effective role of Y^(3+)ions on their values.The nanoferrite CCZYF#5 has the highest grain boundaries capacitance(with enhancing ratio of 59.40%)and the highest grains capacitance(with enhancing ratio of 22.53%)with a relaxation time decrement efficiency of 62.51%.An ultrasonic flaw detector was utilized to determine the elastic moduli of all CCZYF nanoferrites.The nanoferrite CCZYF#5 has the highest longitudinal modulus(with enhancing ratio of 20.95%),the highest shear modulus(with enhancing ratio of48.72%),highest Young's modulus(with enhancing ratio of 88.47%),the highest bulk modulus(with enhancing ratio 13.27%)and the highest micro hardness(with enhancing ratio 77.77%).Hence,Y3+tuned Co-Cu-Zn nanoferrites possess new opportunities for high-frequency and storage applications.展开更多
文摘This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dynamic systems in various disciplines, including biological processes, heat transfer, and control systems. This study addresses first, second, and third-order nonlinear differential equations using Mathematica for data generation and graphing. The ADM, developed by George Adomian, uses Adomian polynomials to handle nonlinear terms, which can be computationally intensive. In contrast, VIM, developed by He, directly iterates the correction functional, providing a more straightforward and efficient approach. This study highlights VIM’s rapid convergence and effectiveness of VIM, particularly for nonlinear problems, where it simplifies calculations and offers direct solutions without polynomial derivation. The results demonstrate VIM’s superior efficiency and rapid convergence of VIM compared with ADM. The VIM’s minimal computational requirements make it practical for real-time applications and complex system modeling. Our findings align with those of previous research, confirming VIM’s efficiency of VIM in various engineering applications. This study emphasizes the importance of selecting appropriate methods based on specific problem requirements. While ADM is valuable for certain nonlinearities, VIM’s approach is ideal for many engineering scenarios. Future research should explore broader applications and hybrid methods to enhance the solution’s accuracy and efficiency. This comprehensive comparison provides valuable guidance for selecting effective numerical methods for differential equations in engineering.
文摘This paper evaluates the skills of physical Parameterization schemes in simulating extreme rainfall events over Dar es Salaam Region, Tanzania using the Weather Research and Forecasting (WRF) model. The model skill is determined during the 21 December 2011 flooding event. Ten sensitivity experiments have been conducted using Cumulus, Convective and Planetary boundary layer schemes to find the best combination and optimize the WRF model for the study area for heavy rainfall events. Model simulation results were verified against observed data using standard statistical tests. The model simulations show encouraging and better statistical results with the combination of Kain-Fritsch cumulus parameterization scheme, Lin microphysics scheme and Asymmetric Convection Model 2 (ACM2) planetary boundary scheme than any other combinations of physical parameterization schemes over Dar es Salaam region.
文摘Recent advances in technology provide countless innovative solutions and applications for supporting children with autism in educational learning and personal development. This result is an increasingly recognized need to deal with new and unexpected risks and issues such as social exclusion. Diverse advanced technologies were aimed to support learning activity from different perspectives with multiple strategies. However, despite the significant amount of work and explored technology, several common risks pop up due to user’s vulnerability to diverse risks such as negative screen effects. Accordingly, there is still plenty of room for improvement in this regard. To address these vulnerabilities and gaps, this paper aims at identifying issues and challenges improving the technology applied for Autism Spectrum Disorders and autistics dedicated applications. It put forward requirements and design decisions supporting safe autistic dedicated interaction with regards to ISO31000 risk management process.
文摘This paper explores the communicative acts deployed in covid-19 vaccination-related pictorials circulated on digital media platforms.Seven internet images were purposively sampled with a view to exploring their communicative functions as well as their generic structure.The data,which were culled from the websites of the World Health Organisation,Centre for Disease Control,Pan American Health Organisation and Facebook,were subjected to qualitative analysis.The study deployed van Leeuwen’s Multimodal Discourse Analysis and Yuen’s Generic Structure Potential as theoretical anchor.The multimodal communicative acts are deployed for instructive,illustrative,informative,persuasive,inviting and advisory purposes.Categories such as Lead,Emblem,Announcement and Enhancer are compulsory in the data while Display,Tag and Call-and-Visit Information are non-compulsory elements.This can be catalogued as:‘Lead^(Display)^Emblem^(Announcement)^(Enhancer)^(Tag)^(Call-and-Visit Information)’.The study contends that the various semiotic resources deployed in the internet-circulated covid-19 images are used not only for informative and other communicative purposes but also to evoke attitudinal change towards and encourage widespread acceptance of the covid-19 vaccines.
文摘In this paper, I consider two species feeding on limiting substrate in a chemostat taking into account some possible effects of each species on the other one. System of differential equations is proposed as model of these effects with general inter-specific density-dependent growth rates. Three cases were considered. The first one for a mutual inhibitory relationship where it is proved that at most one species can survive which confirms the competitive exclusion principle. Initial concentrations of species have great importance in determination of which species is the winner. The second one for a food web relationship where it is proved that under general assumptions on the dilution rate, both species persist for any initial conditions. Finally, a third case dealing with an obligate mutualistic relationship was discussed. It is proved that initial condition has a great importance in determination of persistence or extinction of both species.
文摘Upgrading mechanical-dielectric features of ferrites through rare-earth yttrium(Y^(3+))doping provides feasibility to evolving high-frequency electronic devices.This paper reports the mechanical and dielectric properties of Co_(0.5)Cu_(0.25)Zn_(0.25)Y_(x)Fe_(2-x)O_(4)ferrite nanoparticles labeled as CCZYF#0,CCZYF#1,CCZYF#2,CCZYF#3,CCZYF#4 and CCZYF#5 for x=0.0.0.02,0.04,0.06,0.08,and 0.1,respectively.The frequency and temperature dependence of dielectric parameters and co nductivity of all CCZYF nanoferrites are well discussed.The nanoferrite CCZYF#5 has the highest dielectric constant(enhancing ratio 170%)and the highest conductivity(enhancing ratio 7125.81%)compared with the undoped sample.Nyquist plots of all CCZYF nano ferrites manifest two arcs;the main reasons for the dielectric process are the grain boundaries and bulk grains.All impedance parameters were determined,which showed the effective role of Y^(3+)ions on their values.The nanoferrite CCZYF#5 has the highest grain boundaries capacitance(with enhancing ratio of 59.40%)and the highest grains capacitance(with enhancing ratio of 22.53%)with a relaxation time decrement efficiency of 62.51%.An ultrasonic flaw detector was utilized to determine the elastic moduli of all CCZYF nanoferrites.The nanoferrite CCZYF#5 has the highest longitudinal modulus(with enhancing ratio of 20.95%),the highest shear modulus(with enhancing ratio of48.72%),highest Young's modulus(with enhancing ratio of 88.47%),the highest bulk modulus(with enhancing ratio 13.27%)and the highest micro hardness(with enhancing ratio 77.77%).Hence,Y3+tuned Co-Cu-Zn nanoferrites possess new opportunities for high-frequency and storage applications.