A diverse suite of Archaean gneisses at Huangbaiyu village in the North China Craton, includes rare fuchsite-bearing (Cr-muscovite) siliceous rocks - known as the Caozhuang quartzite. The Caozhuang quartzite is stro...A diverse suite of Archaean gneisses at Huangbaiyu village in the North China Craton, includes rare fuchsite-bearing (Cr-muscovite) siliceous rocks - known as the Caozhuang quartzite. The Caozhuang quartzite is strongly deformed and locally mylonitic, with silica penetration and pegmatite veining common. It contains abundant 3880-3600 Ma and some Palaeoarchaean zircons. Because of its siliceous nature, the presence of fuchsite and its complex zircon age distribution, it has until now been accepted as a (mature) quartzite. However, the Caozhuang quartzite sample studied here is feldspathic. The shape and cathodoluminescence petrography of the Caozhuang quartzite zircons show they resemble those found in immature detrital sedimentary rocks of local provenance or in Eoarchaean polyphase orthog- neisses, and not those in mature quartzites. The Caozhuang quartzite intra-zircon mineral inclusions are dominated by quartz,展开更多
Estimates of early atmosphere compositions from metamorphosed banded iron formations(BIFs)including the well-studied ≥3.7 BIFs of the Isua supracrustal belt(Greenland)are dependent on knowledge of primary versus seco...Estimates of early atmosphere compositions from metamorphosed banded iron formations(BIFs)including the well-studied ≥3.7 BIFs of the Isua supracrustal belt(Greenland)are dependent on knowledge of primary versus secondary Fe-mineralogical assemblages.Using new observations from locally well preserved domains,we interpret that a previously assumed primary redox indicator mineral,magnetite,is secondary after sedimentary Fe-clays(probably greenalite)±carbonates.Within ~3.7 Ga Isua BIF,pre-tectonic nodules of quartz+Fe-rich amphibole±calcite reside in a finegrained(≤100 μm)quartz+magnetite matrix.We interpret the Isua nodule amphibole as the metamorphosed equivalent of primary Fe-rich clays,armoured from diagenetic oxidative reactions by early silica concretion.Additionally,in another low strain lacunae,~3.76 Ga BIF layering is not solid magnetite but instead fine-grained magnetite+quartz aggregates.These magnetite+quartz aggregates are interpreted as the metamorphosed equivalent of Fe-clay-rich layers that were oxidised during diagenesis,because they were not armoured by early silicification.In almost all Isua BIF exposures,this evidence has been destroyed by strong ductile deformation.The Fe-clays likely formed by abiotic reactions between aqueous Fe^(2+)and silica.These clays along with silica±carbonate were deposited below an oceanic Fe-chemocline as the sedimentary precursors of BIF.Breakdown of the clays on the sea floor may have been by anaerobic oxidation of Fe^(2+),a mechanism compatible with iron isotopic data previously published on these rocks.The new determinations of the primary redoxsensitive Fe-mineralogy of BIF significantly revise estimates of early Earth atmospheric oxygen and CO_2 content,with formation of protolith Fe-rich clays and carbonates compatible with an anoxic Eoarchean atmosphere with much higher CO_2 levels than previously estimated for Isua and in the present-day atmosphere.展开更多
The Pushtashan suprasubduction zone assemblage of volcanic rocks, gabbros, norites and peridotites occurs in the Zagros suture zone, Kurdistan region, northeastern Iraq. Volcanic rocks are dominant in the assemblage a...The Pushtashan suprasubduction zone assemblage of volcanic rocks, gabbros, norites and peridotites occurs in the Zagros suture zone, Kurdistan region, northeastern Iraq. Volcanic rocks are dominant in the assemblage and consist mainly of basalt and basaltic andesite flows with interlayered red shale and limestone horizons. Earlier lavas tend to be MORB-like, whereas later lavas display island arc tholeiite to boninitic geochemical characteristics. Tholeiitic gabbros intrude the norites and display fractionation trends typical of crystallisation under low-pressure conditions, whereas the norites display calc-alkaline traits, suggesting their source included mantle metasomatised by fluids released from subducted oceanic crust. Enrichment of Rb, Ba, Sr, Th and the presence of negative Nb anomalies indicate generation in a suprasubduction zone setting. Trondhjemite and granodiorite intrusions are present in the volcanic rocks, gabbros and norites. SHRIMP U-Pb dating of magmatic zircons from a granodiorite yields a mean^(206)Pb/^(238)U age of 96.0 ±2.0 Ma(Cenomanian). The initial ε_(Hf) value for the zircons show a narrow range from +12.8 to+15.6, with a weighted mean of + 13.90±0.96. This initial value is within error of model depleted mantle at 96 Ma or slightly below that, in the field of arc rocks with minimal contamination by older continental crust. The compositional bimodality of the Pushtashan suprasubduction sequence suggests seafloor spreading during the initiation of subduction, with a lava stratigraphy from earlyerupted MORB transitioning into calc-alkaline lavas and finally by 96 Ma intrusion of granodioritic and trondhjemitic bodies with juvenile crustal isotopic signatures. The results confirm another Cretaceous arc remnant preserved as an allochthon within the Iraqi segment of the Cenozoic Zagros suture zone. Implications for the closure of Neo-Tethys are discussed.展开更多
Reconstructions of past seafloor age make it possible to quantify how plate tectonic forces,surface heat flow,ocean basin volume and global sea level have varied through geological time.However,past ocean basins that ...Reconstructions of past seafloor age make it possible to quantify how plate tectonic forces,surface heat flow,ocean basin volume and global sea level have varied through geological time.However,past ocean basins that have now been subducted cannot be uniquely reconstructed,and a significant challenge is how to explore a wide range of possible reconstructions.Here,we investigate possible distributions of seafloor ages from the late Paleozoic to present using published full-plate reconstructions and a new,efficient seafloor age reconstruction workflow,all developed using the open-source software GPlates.We test alternative reconstruction models and examine the influence of assumed spreading rates within the Panthalassa Ocean on the reconstructed history of mean seafloor age,oceanic heat flow,and the contribution of ocean basin volume to global sea level.The reconstructions suggest variations in mean seafloor age of~15 Myr during the late Paleozoic,similar to the amplitude of variations previously proposed for the Cretaceous to present.Our reconstructed oceanic age-area distributions are broadly compatible with a scenario in which the long-period fluctuations in global sea level since the late Paleozoic are largely driven by changes in mean seafloor age.Previous suggestions of a constant rate of seafloor production through time can be modelled using our workflow,but require that oceanic plates in the Paleozoic move slower than continents based on current reconstructions of continental motion,which is difficult to reconcile with geodynamic studies.展开更多
基金the Ministry of Land and Resources of the People's Republic of China(1212010711815,1212010811033)
文摘A diverse suite of Archaean gneisses at Huangbaiyu village in the North China Craton, includes rare fuchsite-bearing (Cr-muscovite) siliceous rocks - known as the Caozhuang quartzite. The Caozhuang quartzite is strongly deformed and locally mylonitic, with silica penetration and pegmatite veining common. It contains abundant 3880-3600 Ma and some Palaeoarchaean zircons. Because of its siliceous nature, the presence of fuchsite and its complex zircon age distribution, it has until now been accepted as a (mature) quartzite. However, the Caozhuang quartzite sample studied here is feldspathic. The shape and cathodoluminescence petrography of the Caozhuang quartzite zircons show they resemble those found in immature detrital sedimentary rocks of local provenance or in Eoarchaean polyphase orthog- neisses, and not those in mature quartzites. The Caozhuang quartzite intra-zircon mineral inclusions are dominated by quartz,
基金supported by Australian Research Council(Grant No.DP120100273)the GeoQuEST Research Centre of the University of Wollongong,Australia
文摘Estimates of early atmosphere compositions from metamorphosed banded iron formations(BIFs)including the well-studied ≥3.7 BIFs of the Isua supracrustal belt(Greenland)are dependent on knowledge of primary versus secondary Fe-mineralogical assemblages.Using new observations from locally well preserved domains,we interpret that a previously assumed primary redox indicator mineral,magnetite,is secondary after sedimentary Fe-clays(probably greenalite)±carbonates.Within ~3.7 Ga Isua BIF,pre-tectonic nodules of quartz+Fe-rich amphibole±calcite reside in a finegrained(≤100 μm)quartz+magnetite matrix.We interpret the Isua nodule amphibole as the metamorphosed equivalent of primary Fe-rich clays,armoured from diagenetic oxidative reactions by early silica concretion.Additionally,in another low strain lacunae,~3.76 Ga BIF layering is not solid magnetite but instead fine-grained magnetite+quartz aggregates.These magnetite+quartz aggregates are interpreted as the metamorphosed equivalent of Fe-clay-rich layers that were oxidised during diagenesis,because they were not armoured by early silicification.In almost all Isua BIF exposures,this evidence has been destroyed by strong ductile deformation.The Fe-clays likely formed by abiotic reactions between aqueous Fe^(2+)and silica.These clays along with silica±carbonate were deposited below an oceanic Fe-chemocline as the sedimentary precursors of BIF.Breakdown of the clays on the sea floor may have been by anaerobic oxidation of Fe^(2+),a mechanism compatible with iron isotopic data previously published on these rocks.The new determinations of the primary redoxsensitive Fe-mineralogy of BIF significantly revise estimates of early Earth atmospheric oxygen and CO_2 content,with formation of protolith Fe-rich clays and carbonates compatible with an anoxic Eoarchean atmosphere with much higher CO_2 levels than previously estimated for Isua and in the present-day atmosphere.
基金supported by University of Kirkukpartially supported by the GeoQuEST Research Centre(University of Wollongong)
文摘The Pushtashan suprasubduction zone assemblage of volcanic rocks, gabbros, norites and peridotites occurs in the Zagros suture zone, Kurdistan region, northeastern Iraq. Volcanic rocks are dominant in the assemblage and consist mainly of basalt and basaltic andesite flows with interlayered red shale and limestone horizons. Earlier lavas tend to be MORB-like, whereas later lavas display island arc tholeiite to boninitic geochemical characteristics. Tholeiitic gabbros intrude the norites and display fractionation trends typical of crystallisation under low-pressure conditions, whereas the norites display calc-alkaline traits, suggesting their source included mantle metasomatised by fluids released from subducted oceanic crust. Enrichment of Rb, Ba, Sr, Th and the presence of negative Nb anomalies indicate generation in a suprasubduction zone setting. Trondhjemite and granodiorite intrusions are present in the volcanic rocks, gabbros and norites. SHRIMP U-Pb dating of magmatic zircons from a granodiorite yields a mean^(206)Pb/^(238)U age of 96.0 ±2.0 Ma(Cenomanian). The initial ε_(Hf) value for the zircons show a narrow range from +12.8 to+15.6, with a weighted mean of + 13.90±0.96. This initial value is within error of model depleted mantle at 96 Ma or slightly below that, in the field of arc rocks with minimal contamination by older continental crust. The compositional bimodality of the Pushtashan suprasubduction sequence suggests seafloor spreading during the initiation of subduction, with a lava stratigraphy from earlyerupted MORB transitioning into calc-alkaline lavas and finally by 96 Ma intrusion of granodioritic and trondhjemitic bodies with juvenile crustal isotopic signatures. The results confirm another Cretaceous arc remnant preserved as an allochthon within the Iraqi segment of the Cenozoic Zagros suture zone. Implications for the closure of Neo-Tethys are discussed.
基金This work was supported by NSFC(Grant Nos.41972237)ARC(Grant Nos.IH130200012,DP180102280 and DE160101020).
文摘Reconstructions of past seafloor age make it possible to quantify how plate tectonic forces,surface heat flow,ocean basin volume and global sea level have varied through geological time.However,past ocean basins that have now been subducted cannot be uniquely reconstructed,and a significant challenge is how to explore a wide range of possible reconstructions.Here,we investigate possible distributions of seafloor ages from the late Paleozoic to present using published full-plate reconstructions and a new,efficient seafloor age reconstruction workflow,all developed using the open-source software GPlates.We test alternative reconstruction models and examine the influence of assumed spreading rates within the Panthalassa Ocean on the reconstructed history of mean seafloor age,oceanic heat flow,and the contribution of ocean basin volume to global sea level.The reconstructions suggest variations in mean seafloor age of~15 Myr during the late Paleozoic,similar to the amplitude of variations previously proposed for the Cretaceous to present.Our reconstructed oceanic age-area distributions are broadly compatible with a scenario in which the long-period fluctuations in global sea level since the late Paleozoic are largely driven by changes in mean seafloor age.Previous suggestions of a constant rate of seafloor production through time can be modelled using our workflow,but require that oceanic plates in the Paleozoic move slower than continents based on current reconstructions of continental motion,which is difficult to reconcile with geodynamic studies.