Diatom data of 192 surface sediment samples from the marginal seas in the western Pacific together with modern summer and winter sea surface temperature and salinity data were analyzed.The results of canonical corresp...Diatom data of 192 surface sediment samples from the marginal seas in the western Pacific together with modern summer and winter sea surface temperature and salinity data were analyzed.The results of canonical correspondence analysis show that summer sea-surface salinity(SSS) is highly positively correlated with winter SSS and so is summer sea-surface temperature(SST) with winter SST.The correlations between SSSs and SSTs are less positively correlated,which may be due to interactions of regional current pattern and monsoon climate.The correlations between diatom species,sample sites and environmental variables concur with known diatom ecology and regional oceanographic characters.The results of forward selection of the environmental variables and associated Monte Carlo permutation tests of the statistical significance of each variable suggest that summer SSS and winter SST are the main environmental factors affecting the diatom distribution in the area and therefore preserved diatom data from down core could be used for reconstructions of summer SSS and winter SST in the region.展开更多
The Greenland ice core from NorthGRIP (NGRIP) contains a proxy climate record across the Pleistocene-Holocene boundary of unprecedented clarity and resolution. Analysis of an array of physical and chemical parameter...The Greenland ice core from NorthGRIP (NGRIP) contains a proxy climate record across the Pleistocene-Holocene boundary of unprecedented clarity and resolution. Analysis of an array of physical and chemical parameters within the ice enables the base of the Holocene, as reflected in the first signs of climatic warming at the end of the Younger Dryas/Greenland Stadial 1 cold phase, to be located with a high degree of precision.展开更多
Late Ordovician shelly faunas occur at several localities in the(O|¨)stersund area of J(a|¨)mtland,central Sweden,an area that today is included in the Lower Allochton of the Swedish Caledonides.The Late Ord...Late Ordovician shelly faunas occur at several localities in the(O|¨)stersund area of J(a|¨)mtland,central Sweden,an area that today is included in the Lower Allochton of the Swedish Caledonides.The Late Ordovician faunas of J(a|¨)mtland have developed against a background of intense and rapid global climate change.The faunas are present approximately in the middle of the Kyrk(?)s Quartzite in the east and occur in the uppermost Kogsta Siltstone in the west. Changes in faunas and depositional environments provide regional evidence of these global cooling and regressive events.The faunas occur in shale and siltstone facies and are used to effect展开更多
During the Mesoproterozoic, central Fennoscandia and Laurentia (Greenland) were characterized by a weakly extensional stress regime, as evident from episodic rapakivi granites, dolerite dykes, continental rift intru...During the Mesoproterozoic, central Fennoscandia and Laurentia (Greenland) were characterized by a weakly extensional stress regime, as evident from episodic rapakivi granites, dolerite dykes, continental rift intrusives, sandstone basins and continental flood basalts. Along the southwestern active margin of Fennoscandia, the 1.64-1.52 Ga Gothian and 1.52-1.48 Ga Telemarkian accretionary events resulted in oceanwards continental growth. The 1.47-1.42 Ga Hallandian- Danopolonian event included high-grade metamorphism and granite magmatism in southern Fennoscandia. The pre-Sveconorwegian 1.34-1.14 Ga period is characterized by bimodal magmatism associated with sedimentation, possibly reflecting transcurrent tectonics. The Sveconorwegian orogeny involved polyphase imbrication of terranes between 1.14 and 0.97 Ga, as a result of a collision between Baltica and another major plate, followed by relaxation and post-collisional magmatism between 0. 96 and 0. 90 Ga. Recent geologic data support classical models restoring the Sveconorwegian belt directly to the east of the Grenville belt of Laurentia at 1.0 Ga. Fragments of Paleo-to Mesoproterozoic crust showing late Grenvillian-Sveconorwegian (1.00-0.92 Ga) magmatism and/or metamorphism are exposed in several tectonic levels in the Caledonides of Scandinavia, Svalbard and East Greenland, on both sides of the inferred Iapetus suture. Linking these fragments into a coherent late-Grenvillian tectonic model, however, require additional study.展开更多
The Nordic countries have experienced multiple glaciations and intervening interglacials during the last ca. 2.5-3 million years. Although evidence from Greenland and Iceland shows that ice sheets started to expand so...The Nordic countries have experienced multiple glaciations and intervening interglacials during the last ca. 2.5-3 million years. Although evidence from Greenland and Iceland shows that ice sheets started to expand some time before 3 Ma, little is known about the glaciations and intervening interglacials older than the last Glacial Maximum due to repeated phases of glacial erosion and reworking. The extensive Saalian glaciation (c. 140 ka BP) contributed to high sea levels in Greenland and in the Baltic area during the early part of the last interglacial (Eemian). Temperatures were about 5 ℃ higher during the Eemian than they are today and the Greenland ice sheet was reduced to about half of its present size, causing globally higher sea levels than we have today. Ice extent in Fennoscandia was restricted during early Weichselian stadials, but middle Weichselian ice advances in Scandinavia reached as far as Denmark. During the Last Glacial Maximum, large ice sheets were present in all Nordic countries and coalesced with neighboring ice sheets. Deglaciation commenced around 17-15 ka BP in most areas and was promoted by rapidly rising global sea level and glacial isostasy. The Younger Dryas cold event(c. 12.6-11.5 ka BP) is seen as a short-term re-advance, still-stand or fluctuation of land-based ice sheet margins. Around 7-9 ka BP ice sheets had disappeared or had attained their present size. While uplift is still going on in some regions, others are subject to submergence. The different stages of development of the Baltic Sea are an example of how the intricare interplay between glacial eustasy and isostasy influences sedimentation, basin size and drainage patterns.展开更多
基金Supported by the support by the NSFC (No 40676027)the Fund for Creative Research Groups of China (No 40721004)the 111 Project (No B08022)
文摘Diatom data of 192 surface sediment samples from the marginal seas in the western Pacific together with modern summer and winter sea surface temperature and salinity data were analyzed.The results of canonical correspondence analysis show that summer sea-surface salinity(SSS) is highly positively correlated with winter SSS and so is summer sea-surface temperature(SST) with winter SST.The correlations between SSSs and SSTs are less positively correlated,which may be due to interactions of regional current pattern and monsoon climate.The correlations between diatom species,sample sites and environmental variables concur with known diatom ecology and regional oceanographic characters.The results of forward selection of the environmental variables and associated Monte Carlo permutation tests of the statistical significance of each variable suggest that summer SSS and winter SST are the main environmental factors affecting the diatom distribution in the area and therefore preserved diatom data from down core could be used for reconstructions of summer SSS and winter SST in the region.
文摘The Greenland ice core from NorthGRIP (NGRIP) contains a proxy climate record across the Pleistocene-Holocene boundary of unprecedented clarity and resolution. Analysis of an array of physical and chemical parameters within the ice enables the base of the Holocene, as reflected in the first signs of climatic warming at the end of the Younger Dryas/Greenland Stadial 1 cold phase, to be located with a high degree of precision.
文摘Late Ordovician shelly faunas occur at several localities in the(O|¨)stersund area of J(a|¨)mtland,central Sweden,an area that today is included in the Lower Allochton of the Swedish Caledonides.The Late Ordovician faunas of J(a|¨)mtland have developed against a background of intense and rapid global climate change.The faunas are present approximately in the middle of the Kyrk(?)s Quartzite in the east and occur in the uppermost Kogsta Siltstone in the west. Changes in faunas and depositional environments provide regional evidence of these global cooling and regressive events.The faunas occur in shale and siltstone facies and are used to effect
文摘During the Mesoproterozoic, central Fennoscandia and Laurentia (Greenland) were characterized by a weakly extensional stress regime, as evident from episodic rapakivi granites, dolerite dykes, continental rift intrusives, sandstone basins and continental flood basalts. Along the southwestern active margin of Fennoscandia, the 1.64-1.52 Ga Gothian and 1.52-1.48 Ga Telemarkian accretionary events resulted in oceanwards continental growth. The 1.47-1.42 Ga Hallandian- Danopolonian event included high-grade metamorphism and granite magmatism in southern Fennoscandia. The pre-Sveconorwegian 1.34-1.14 Ga period is characterized by bimodal magmatism associated with sedimentation, possibly reflecting transcurrent tectonics. The Sveconorwegian orogeny involved polyphase imbrication of terranes between 1.14 and 0.97 Ga, as a result of a collision between Baltica and another major plate, followed by relaxation and post-collisional magmatism between 0. 96 and 0. 90 Ga. Recent geologic data support classical models restoring the Sveconorwegian belt directly to the east of the Grenville belt of Laurentia at 1.0 Ga. Fragments of Paleo-to Mesoproterozoic crust showing late Grenvillian-Sveconorwegian (1.00-0.92 Ga) magmatism and/or metamorphism are exposed in several tectonic levels in the Caledonides of Scandinavia, Svalbard and East Greenland, on both sides of the inferred Iapetus suture. Linking these fragments into a coherent late-Grenvillian tectonic model, however, require additional study.
文摘The Nordic countries have experienced multiple glaciations and intervening interglacials during the last ca. 2.5-3 million years. Although evidence from Greenland and Iceland shows that ice sheets started to expand some time before 3 Ma, little is known about the glaciations and intervening interglacials older than the last Glacial Maximum due to repeated phases of glacial erosion and reworking. The extensive Saalian glaciation (c. 140 ka BP) contributed to high sea levels in Greenland and in the Baltic area during the early part of the last interglacial (Eemian). Temperatures were about 5 ℃ higher during the Eemian than they are today and the Greenland ice sheet was reduced to about half of its present size, causing globally higher sea levels than we have today. Ice extent in Fennoscandia was restricted during early Weichselian stadials, but middle Weichselian ice advances in Scandinavia reached as far as Denmark. During the Last Glacial Maximum, large ice sheets were present in all Nordic countries and coalesced with neighboring ice sheets. Deglaciation commenced around 17-15 ka BP in most areas and was promoted by rapidly rising global sea level and glacial isostasy. The Younger Dryas cold event(c. 12.6-11.5 ka BP) is seen as a short-term re-advance, still-stand or fluctuation of land-based ice sheet margins. Around 7-9 ka BP ice sheets had disappeared or had attained their present size. While uplift is still going on in some regions, others are subject to submergence. The different stages of development of the Baltic Sea are an example of how the intricare interplay between glacial eustasy and isostasy influences sedimentation, basin size and drainage patterns.