Permeability is an important index in reservoir evaluation,oil and gas accumulation control,and production effi ciency.At present,permeability can be obtained through several methods.However,these methods are not suit...Permeability is an important index in reservoir evaluation,oil and gas accumulation control,and production effi ciency.At present,permeability can be obtained through several methods.However,these methods are not suitable for tight sandstone in general because the pore type in tight sandstone is mainly secondary pores and has the characteristics of low porosity and permeability,high capillary pressure,and high irreducible water saturation.Mud invasion depth is closely related to permeability during drilling.In general,the greater the permeability,the shallower the mud invasion depth,and the smaller the permeability,the deeper the mud invasion depth.Therefore,this paper builds a model to predict the permeability of tight sandstone using mud invasion depth.The model is based on the improvement of the Darcy flow equation to obtain permeability using mud invasion depth inversion of array induction logging.The influence of various permeability factors on the model is analyzed by numerical simulation.The model is used to predict the permeability of tight sandstone in the south of the Ordos Basin.The predicted permeability is highly consistent with the core analysis permeability,which verifi es the reliability of the method.展开更多
Total organic carbon(TOC)content is one of the most important parameters for characterizing the quality of source rocks and assessing the hydrocarbon-generating potential of shales.The Lucaogou Formation shale reservo...Total organic carbon(TOC)content is one of the most important parameters for characterizing the quality of source rocks and assessing the hydrocarbon-generating potential of shales.The Lucaogou Formation shale reservoirs in the Jimusaer Sag,Junggar Basin,NW China,is characterized by extremely complex lithology and a wide variety of mineral compositions with source rocks mainly consisting of carbonaceous mudstone and dolomitic mudstone.The logging responses of organic matter in the shale reservoirs is quite different from those in conventional reservoirs.Analyses show that the traditional△logR method is not suitable for evaluating the TOC content in the study area.Analysis of the sensitivity characteristics of TOC content to well logs reveals that the TOC content has good correlation with the separation degree of porosity logs.After a dimension reduction processing by the principal component analysis technology,the principal components are determined through correlation analysis of porosity logs.The results show that the TOC values obtained by the new method are in good agreement with that measured by core analysis.The average absolute error of the new method is only 0.555,much less when compared with 1.222 of using traditional△logR method.The proposed method can be used to produce more accurate TOC estimates,thus providing a reliable basis for source rock mapping.展开更多
Based on the drilling data of the Upper Ordovician Wufeng Shale and the Lower Silurian Longmaxi Shale in southern Sichuan Basin,the construction of matrix pores and the development condition of fractures in a marine o...Based on the drilling data of the Upper Ordovician Wufeng Shale and the Lower Silurian Longmaxi Shale in southern Sichuan Basin,the construction of matrix pores and the development condition of fractures in a marine organic-rich shale are quantitatively evaluated through the establishment of the reservoir petrophysical models and porosity mathematical models.Our studies show that there are four major characteristics of the Longmaxi Shale confirmed by the quantitative characterization:(1)the pore volume of per unit mass is the highest in organic matter,followed in clay minerals,finally in brittle minerals;(2)the porosity of the effective shale reservoir is moderate and equal to that of the Barnett Shale,and the main parts of the shale reservoir spaces are interlayer pores of clay minerals and organic pores;(3)the porosity of the organic-rich shale is closely related to TOC and brittle mineral/clay mineral ratio,and mainly increases with TOC and clay mineral content;(4)fractures are developed in this black shale,and are mainly micro ones and medium-large ones.In the Longmaxi Shale,the fracture density increases from top to bottom,reflecting the characteristics with high brittle mineral content,high Young’s modulus,low Poisson's ratio and high brittleness at its bottom.展开更多
基金supported by the National Natural Science Foundation of China project(No.41504103 and No.41804097).
文摘Permeability is an important index in reservoir evaluation,oil and gas accumulation control,and production effi ciency.At present,permeability can be obtained through several methods.However,these methods are not suitable for tight sandstone in general because the pore type in tight sandstone is mainly secondary pores and has the characteristics of low porosity and permeability,high capillary pressure,and high irreducible water saturation.Mud invasion depth is closely related to permeability during drilling.In general,the greater the permeability,the shallower the mud invasion depth,and the smaller the permeability,the deeper the mud invasion depth.Therefore,this paper builds a model to predict the permeability of tight sandstone using mud invasion depth.The model is based on the improvement of the Darcy flow equation to obtain permeability using mud invasion depth inversion of array induction logging.The influence of various permeability factors on the model is analyzed by numerical simulation.The model is used to predict the permeability of tight sandstone in the south of the Ordos Basin.The predicted permeability is highly consistent with the core analysis permeability,which verifi es the reliability of the method.
基金This research was funded by the National Natural Science Foundation of China(Grant No.41504103).
文摘Total organic carbon(TOC)content is one of the most important parameters for characterizing the quality of source rocks and assessing the hydrocarbon-generating potential of shales.The Lucaogou Formation shale reservoirs in the Jimusaer Sag,Junggar Basin,NW China,is characterized by extremely complex lithology and a wide variety of mineral compositions with source rocks mainly consisting of carbonaceous mudstone and dolomitic mudstone.The logging responses of organic matter in the shale reservoirs is quite different from those in conventional reservoirs.Analyses show that the traditional△logR method is not suitable for evaluating the TOC content in the study area.Analysis of the sensitivity characteristics of TOC content to well logs reveals that the TOC content has good correlation with the separation degree of porosity logs.After a dimension reduction processing by the principal component analysis technology,the principal components are determined through correlation analysis of porosity logs.The results show that the TOC values obtained by the new method are in good agreement with that measured by core analysis.The average absolute error of the new method is only 0.555,much less when compared with 1.222 of using traditional△logR method.The proposed method can be used to produce more accurate TOC estimates,thus providing a reliable basis for source rock mapping.
基金supported by the National Basic Research Program of China(Grant No.2013CB228001)Special Issue of Major National Science and Technology(Grant No.2011ZX05018-001)+1 种基金National Oil and Gas Resources Survey and Evaluation Program(Grant No.2009GYXQ15-01)PetroChina Technology Research Project of Unconventional Oil and Gas Exploration and Development(Grant No.2011A-4801)
文摘Based on the drilling data of the Upper Ordovician Wufeng Shale and the Lower Silurian Longmaxi Shale in southern Sichuan Basin,the construction of matrix pores and the development condition of fractures in a marine organic-rich shale are quantitatively evaluated through the establishment of the reservoir petrophysical models and porosity mathematical models.Our studies show that there are four major characteristics of the Longmaxi Shale confirmed by the quantitative characterization:(1)the pore volume of per unit mass is the highest in organic matter,followed in clay minerals,finally in brittle minerals;(2)the porosity of the effective shale reservoir is moderate and equal to that of the Barnett Shale,and the main parts of the shale reservoir spaces are interlayer pores of clay minerals and organic pores;(3)the porosity of the organic-rich shale is closely related to TOC and brittle mineral/clay mineral ratio,and mainly increases with TOC and clay mineral content;(4)fractures are developed in this black shale,and are mainly micro ones and medium-large ones.In the Longmaxi Shale,the fracture density increases from top to bottom,reflecting the characteristics with high brittle mineral content,high Young’s modulus,low Poisson's ratio and high brittleness at its bottom.