期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer 被引量:9
1
作者 Wei Chen Xi Chen +2 位作者 Jianbing Peng Mahdi Panahi Saro Lee 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期93-107,共15页
As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been ... As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been the ability to predict landslide susceptibility,which can be used to design schemes of land exploitation and urban development in mountainous areas.In this study,the teaching-learning-based optimization(TLBO)and satin bowerbird optimizer(SBO)algorithms were applied to optimize the adaptive neuro-fuzzy inference system(ANFIS)model for landslide susceptibility mapping.In the study area,152 landslides were identified and randomly divided into two groups as training(70%)and validation(30%)dataset.Additionally,a total of fifteen landslide influencing factors were selected.The relative importance and weights of various influencing factors were determined using the step-wise weight assessment ratio analysis(SWARA)method.Finally,the comprehensive performance of the two models was validated and compared using various indexes,such as the root mean square error(RMSE),processing time,convergence,and area under receiver operating characteristic curves(AUROC).The results demonstrated that the AUROC values of the ANFIS,ANFIS-TLBO and ANFIS-SBO models with the training data were 0.808,0.785 and 0.755,respectively.In terms of the validation dataset,the ANFISSBO model exhibited a higher AUROC value of 0.781,while the AUROC value of the ANFIS-TLBO and ANFIS models were 0.749 and 0.681,respectively.Moreover,the ANFIS-SBO model showed lower RMSE values for the validation dataset,indicating that the SBO algorithm had a better optimization capability.Meanwhile,the processing time and convergence of the ANFIS-SBO model were far superior to those of the ANFIS-TLBO model.Therefore,both the ensemble models proposed in this paper can generate adequate results,and the ANFIS-SBO model is recommended as the more suitable model for landslide susceptibility assessment in the study area considered due to its excellent accuracy and efficiency. 展开更多
关键词 Landslide susceptibility Step-wise weight assessment ratio analysis Adaptive neuro-fuzzy fuzzy inference system Teaching-learning-based optimization Satin bowerbird optimizer
下载PDF
Spatial prediction of landslide susceptibility in western Serbia using hybrid support vector regression(SVR)with GWO,BAT and COA algorithms 被引量:6
2
作者 Abdul-Lateef Balogun Fatemeh Rezaie +6 位作者 Quoc Bao Pham Ljubomir Gigović Siniša Drobnjak Yusuf AAina Mahdi Panahi Shamsudeen Temitope Yekeen Saro Lee 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期384-398,共15页
In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic informatio... In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic information system database,and our analysis results were used to prepare a landslide inventory map containing 359 landslide events identified from Google Earth,aerial photographs,and other validated sources.A support vector regression(SVR)machine-learning model was used to divide the landslide inventory into training(70%)and testing(30%)datasets.The landslide susceptibility map was produced using 14 causative factors.We applied the established gray wolf optimization(GWO)algorithm,bat algorithm(BA),and cuckoo optimization algorithm(COA)to fine-tune the parameters of the SVR model to improve its predictive accuracy.The resultant hybrid models,SVR-GWO,SVR-BA,and SVR-COA,were validated in terms of the area under curve(AUC)and root mean square error(RMSE).The AUC values for the SVR-GWO(0.733),SVR-BA(0.724),and SVR-COA(0.738)models indicate their good prediction rates for landslide susceptibility modeling.SVR-COA had the greatest accuracy,with an RMSE of 0.21687,and SVR-BA had the least accuracy,with an RMSE of 0.23046.The three optimized hybrid models outperformed the SVR model(AUC=0.704,RMSE=0.26689),confirming the ability of metaheuristic algorithms to improve model performance. 展开更多
关键词 LANDSLIDE Machine learning METAHEURISTIC Spatial modeling Support vector regression
下载PDF
Modelling of piping collapses and gully headcut landforms: Evaluating topographic variables from different types of DEM 被引量:2
3
作者 Alireza Arabameri Fatemeh Rezaie +4 位作者 Subodh Chandra Pal Artemi Cerda Asish Saha Rabin Chakrabortty Saro Lee 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第6期129-146,共18页
The geomorphic studies are extremely dependent on the quality and spatial resolution of digital elevation model(DEM)data.The unique terrain characteristics of a particular landscape are derived from DEM,which are resp... The geomorphic studies are extremely dependent on the quality and spatial resolution of digital elevation model(DEM)data.The unique terrain characteristics of a particular landscape are derived from DEM,which are responsible for initiation and development of ephemeral gullies.As the topographic features of an area significantly influences on the erosive power of the water flow,it is an important task the extraction of terrain features from DEM to properly research gully erosion.Alongside,topography is highly correlated with other geo-environmental factors i.e.geology,climate,soil types,vegetation density and floristic composition,runoff generation,which ultimately influences on gully occurrences.Therefore,terrain morphometric attributes derived from DEM data are used in spatial prediction of gully erosion susceptibility(GES)mapping.In this study,remote sensing-Geographic information system(GIS)techniques coupled with machine learning(ML)methods has been used for GES mapping in the parts of Semnan province,Iran.Current research focuses on the comparison of predicted GES result by using three types of DEM i.e.Advanced Land Observation satellite(ALOS),ALOS World 3D-30 m(AW3D30)and Advanced Space borne Thermal Emission and Reflection Radiometer(ASTER)in different resolutions.For further progress of our research work,here we have used thirteen suitable geo-environmental gully erosion conditioning factors(GECFs)based on the multi-collinearity analysis.ML methods of conditional inference forests(Cforest),Cubist model and Elastic net model have been chosen for modelling GES accordingly.Variable’s importance of GECFs was measured through sensitivity analysis and result show that elevation is the most important factor for occurrences of gullies in the three aforementioned ML methods(Cforest=21.4,Cubist=19.65 and Elastic net=17.08),followed by lithology and slope.Validation of the model’s result was performed through area under curve(AUC)and other statistical indices.The validation result of AUC has shown that Cforest is the most appropriate model for predicting the GES assessment in three different DEMs(AUC value of Cforest in ALOS DEM is 0.994,AW3D30 DEM is 0.989 and ASTER DEM is 0.982)used in this study,followed by elastic net and cubist model.The output result of GES maps will be used by decision-makers for sustainable development of degraded land in this study area. 展开更多
关键词 Digital elevation model(DEM) Gully erosion susceptibility(GES) Advanced land observation satellite(ALOS) Cforest Cubist Elastic net
下载PDF
Deep learning neural networks for spatially explicit prediction of flash flood probability 被引量:4
4
作者 Mahdi Panahi Abolfazl Jaafari +5 位作者 Ataollah Shirzadi Himan Shahabi Omid Rahmati Ebrahim Omidvar Saro Lee Dieu Tien Bui 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期370-383,共14页
Flood probability maps are essential for a range of applications,including land use planning and developing mitigation strategies and early warning systems.This study describes the potential application of two archite... Flood probability maps are essential for a range of applications,including land use planning and developing mitigation strategies and early warning systems.This study describes the potential application of two architectures of deep learning neural networks,namely convolutional neural networks(CNN)and recurrent neural networks(RNN),for spatially explicit prediction and mapping of flash flood probability.To develop and validate the predictive models,a geospatial database that contained records for the historical flood events and geo-environmental characteristics of the Golestan Province in northern Iran was constructed.The step-wise weight assessment ratio analysis(SWARA)was employed to investigate the spatial interplay between floods and different influencing factors.The CNN and RNN models were trained using the SWARA weights and validated using the receiver operating characteristics technique.The results showed that the CNN model(AUC=0.832,RMSE=0.144)performed slightly better than the RNN model(AUC=0.814,RMSE=0.181)in predicting future floods.Further,these models demonstrated an improved prediction of floods compared to previous studies that used different models in the same study area.This study showed that the spatially explicit deep learning neural network models are successful in capturing the heterogeneity of spatial patterns of flood probability in the Golestan Province,and the resulting probability maps can be used for the development of mitigation plans in response to the future floods.The general policy implication of our study suggests that design,implementation,and verification of flood early warning systems should be directed to approximately 40%of the land area characterized by high and very susceptibility to flooding. 展开更多
关键词 Spatial modeling Machine learning Convolutional neural networks Recurrent neural networks GIS Iran
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部