The use of terrestrial laser scanning(TLS) in the caves has been growing drastically over the last decade.However, TLS application to cave stability assessment has not received much attention of researchers.This stu...The use of terrestrial laser scanning(TLS) in the caves has been growing drastically over the last decade.However, TLS application to cave stability assessment has not received much attention of researchers.This study attempted to utilize rock surface orientations obtained from TLS point cloud collected along cave passages to(1) investigate the influence of rock geostructure on cave passage development, and(2)assess cave stability by determining areas susceptible to different failure types. The TLS point cloud was divided into six parts(Entry hall, Chamber, Main hall, Shaft 1, Shaft 2 and Shaft 3), each representing different segments of the cave passages. Furthermore, the surface orientation information was extracted and grouped into surface discontinuity joint sets. The computed global mean and best-fit planes of the entire cave show that the outcrop dips 290° with a major north-south strike. But at individual level, the passages with dip angle between 26° and 80° are featured with dip direction of 75°-322°. Kinematic tests reveal the potential for various failure modes of rock slope. Our findings show that toppling is the dominant failure type accounting for high-risk rockfall in the cave, with probabilities of 75.26%, 43.07%and 24.82% in the Entry hall, Main hall and Shaft 2, respectively. Unlike Shaft 2 characterized by high risk of the three failure types(32.49%, 24.82% and 50%), the chamber and Shaft 3 passages are not suffering from slope failure. The results also show that the characteristics of rock geostructure considerably influence the development of the cave passages, and four sections of the cave are susceptible to different slope failure types, at varying degrees of risk.展开更多
The detection of impervious surface (IS) in heterogeneous urban areas is one of the most challenging tasks in urban remote sensing. One of the limitations in IS detection at the parcel level is the lack of sufficient ...The detection of impervious surface (IS) in heterogeneous urban areas is one of the most challenging tasks in urban remote sensing. One of the limitations in IS detection at the parcel level is the lack of sufficient training data. In this study, a generic model of spatial distribution of roof materials is considered to overcome this limitation. A generic model that is based on spectral, spatial and textural information which is extracted from available training data is proposed. An object-based approach is used to extract the information inherent in the image. Furthermore, linear discriminant analysis is used for dimensionality reduction and to discriminate between different spatial, spectral and textural attributes. The generic model is composed of a discriminant function based on linear combinations of the predictor variables that provide the best discrimination among the groups. The discriminate analysis result shows that of the 54 attributes extracted from the WorldView-2 image, only 13 attributes related to spatial, spectral and textural information are useful for discriminating different roof materials. Finally, this model is applied to different WorldView-2 images from different areas and proves that this model has good potential to predict roof materials from the WorldView-2 images without using training data.展开更多
Rooftop rainwater harvesting (RRWH) systems can provide low-cost decentralized water to urban and rural households that have no access to treated water.These systems are considered the key strategic adoption measures ...Rooftop rainwater harvesting (RRWH) systems can provide low-cost decentralized water to urban and rural households that have no access to treated water.These systems are considered the key strategic adoption measures for communities affected by climate change.Roofing materials,roofing conditions,roofing geometry,weather conditions,and land use/land cover (LULC) conditions can significantly affect the quality of RRWH.Therefore,the effects of these factors on RRWH quality must be analyzed carefully.Remote sensing and Geographical Information System (GIS) have been widely used in urban environmental analysis.However,these technologies have never been used to analyze,map,and model the effect of various factors on RRWH quality.This review determines the research gaps in the use of geospatial technologies in estimating RRWH quality and simulate the implications of roofing materials and roofing surface conditions towards the urban environment.An approach for the integrated use of remote sensing and GIS to assess the quality of RRWH is also proposed.展开更多
3D terrain visualization of geographic information systems(GIS)data has become an important issue in recent years.This is due to the emergence of new geo-browsers such as Google Earth,widely popular among users.The av...3D terrain visualization of geographic information systems(GIS)data has become an important issue in recent years.This is due to the emergence of new geo-browsers such as Google Earth,widely popular among users.The availability of 3D representation tools has increased the demand for 3D terrain visualization.The aim of this paper is to review the literature related to the 3D terrain visualization of GIS data from the first map produced until the online mapping era.The reviews are divided into four different sections:manual visualization of 3D terrain,automated visualization of 3D terrain,online visualization of 3D terrain,and software for visualizing 3D terrain.Then,the paper compares between the different types of systems developed by various authors based on the capabilities and the limitations of the system.Some of the techniques have their own strengths and limitations which solve the problem in 3D terrain visualization.However,the research on improving 3D terrain visualization is still ongoing.This is due to the popularity of online environments and mobile devices that render 3D terrain.This review paper will help interested users understand the current state of 3D terrain visualization of GIS data in a better way.展开更多
基金supported by Ministry of Higher Education, Malaysia research grant(No. FRGS/1-2014-STWN06/UPM/02/1) with vote number 5524502University Putra Malaysia research grant(No.GP-1/2014/943200)
文摘The use of terrestrial laser scanning(TLS) in the caves has been growing drastically over the last decade.However, TLS application to cave stability assessment has not received much attention of researchers.This study attempted to utilize rock surface orientations obtained from TLS point cloud collected along cave passages to(1) investigate the influence of rock geostructure on cave passage development, and(2)assess cave stability by determining areas susceptible to different failure types. The TLS point cloud was divided into six parts(Entry hall, Chamber, Main hall, Shaft 1, Shaft 2 and Shaft 3), each representing different segments of the cave passages. Furthermore, the surface orientation information was extracted and grouped into surface discontinuity joint sets. The computed global mean and best-fit planes of the entire cave show that the outcrop dips 290° with a major north-south strike. But at individual level, the passages with dip angle between 26° and 80° are featured with dip direction of 75°-322°. Kinematic tests reveal the potential for various failure modes of rock slope. Our findings show that toppling is the dominant failure type accounting for high-risk rockfall in the cave, with probabilities of 75.26%, 43.07%and 24.82% in the Entry hall, Main hall and Shaft 2, respectively. Unlike Shaft 2 characterized by high risk of the three failure types(32.49%, 24.82% and 50%), the chamber and Shaft 3 passages are not suffering from slope failure. The results also show that the characteristics of rock geostructure considerably influence the development of the cave passages, and four sections of the cave are susceptible to different slope failure types, at varying degrees of risk.
文摘The detection of impervious surface (IS) in heterogeneous urban areas is one of the most challenging tasks in urban remote sensing. One of the limitations in IS detection at the parcel level is the lack of sufficient training data. In this study, a generic model of spatial distribution of roof materials is considered to overcome this limitation. A generic model that is based on spectral, spatial and textural information which is extracted from available training data is proposed. An object-based approach is used to extract the information inherent in the image. Furthermore, linear discriminant analysis is used for dimensionality reduction and to discriminate between different spatial, spectral and textural attributes. The generic model is composed of a discriminant function based on linear combinations of the predictor variables that provide the best discrimination among the groups. The discriminate analysis result shows that of the 54 attributes extracted from the WorldView-2 image, only 13 attributes related to spatial, spectral and textural information are useful for discriminating different roof materials. Finally, this model is applied to different WorldView-2 images from different areas and proves that this model has good potential to predict roof materials from the WorldView-2 images without using training data.
文摘Rooftop rainwater harvesting (RRWH) systems can provide low-cost decentralized water to urban and rural households that have no access to treated water.These systems are considered the key strategic adoption measures for communities affected by climate change.Roofing materials,roofing conditions,roofing geometry,weather conditions,and land use/land cover (LULC) conditions can significantly affect the quality of RRWH.Therefore,the effects of these factors on RRWH quality must be analyzed carefully.Remote sensing and Geographical Information System (GIS) have been widely used in urban environmental analysis.However,these technologies have never been used to analyze,map,and model the effect of various factors on RRWH quality.This review determines the research gaps in the use of geospatial technologies in estimating RRWH quality and simulate the implications of roofing materials and roofing surface conditions towards the urban environment.An approach for the integrated use of remote sensing and GIS to assess the quality of RRWH is also proposed.
文摘3D terrain visualization of geographic information systems(GIS)data has become an important issue in recent years.This is due to the emergence of new geo-browsers such as Google Earth,widely popular among users.The availability of 3D representation tools has increased the demand for 3D terrain visualization.The aim of this paper is to review the literature related to the 3D terrain visualization of GIS data from the first map produced until the online mapping era.The reviews are divided into four different sections:manual visualization of 3D terrain,automated visualization of 3D terrain,online visualization of 3D terrain,and software for visualizing 3D terrain.Then,the paper compares between the different types of systems developed by various authors based on the capabilities and the limitations of the system.Some of the techniques have their own strengths and limitations which solve the problem in 3D terrain visualization.However,the research on improving 3D terrain visualization is still ongoing.This is due to the popularity of online environments and mobile devices that render 3D terrain.This review paper will help interested users understand the current state of 3D terrain visualization of GIS data in a better way.