期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Development and Implementation of an Advanced Planning & Scheduling (APS) System for Semiconductor Backend Assembly
1
作者 T J Chua T X Cai +5 位作者 F Y Wang William Liu X F Yin W J Yan J P Zhu Joanne Lam 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期189-190,共2页
In this paper, the design, customization and implem en tation of an integrated Advanced Planning and Scheduling (APS) system for a Semi conductor Backend Assembly environment is described. The company is one of the w ... In this paper, the design, customization and implem en tation of an integrated Advanced Planning and Scheduling (APS) system for a Semi conductor Backend Assembly environment is described. The company is one of the w orldwide market leaders in semiconductor packaging technology. The project was d riven by the company’s quest to achieve a competitive edge as a manufacturing po werhouse by providing the shortest possible cycle time with a high degree of fle xibility through the application of Computer Integrated Manufacturing (CIM) tech nology. Gintic was responsible for the Planning & Scheduling functions through o ur APS tool kit, which is called Gintic Scheduling System (GSS). Our APS system is to be integrated with the other two key software systems, namely, the Enterpr ise Resource Planning (ERP) and Manufacturing Execution System (MES), with the C IM framework. The project was divided into four major execution phases. Phase One activities w ere focused on the gathering and analysis of the end users requirements in order to establish the ’As-Is’ situation and the wish list & the expectation of the ’To-Be’ system. Planning and Scheduling prototypes were built using GSS to iden tify the functionality gap between the existing GSS system and the ’To-Be’ mode l, in order to determine the customization effort needed. The project team perfo rmed detailed system analysis, design and development of the ’To-Be’ system dur ing Phase Two of the project. There are a total of four planning and scheduling modules, including Capacity Planning (CP), Daily Lot Release (DLR), Daily Produc tion Scheduling (DPS) and Dynamic Operation Scheduling (DOS). The detailed desig n specifications of each of the features and functionality were confirmed and ac cepted by the end users before the commencement of the development effort. The c ompleted and tested modules were delivered in stages for testing and acceptance by the end user during the Phase Three of the project. Pilot product line was se lected for live testing of the developed planning and scheduling modules, before they are proliferated to the rest of the product lines. System fine-tuning req uests were raised during the last phase of the project; the Planning & Schedulin g modules were fine-tuned to satisfy the end user requirements. This paper will conclude by highlighting the actual benefits achieved by the suc cessful deployment of the GSS system. The company has expressed their deep s atisfaction and has requested Gintic to look into the automation of the Plan ning and Scheduling functions in the Pre-Assembly and Test operations. 展开更多
关键词 integrated PLANNING SCHEDULING semiconductor b ackend assembly
下载PDF
An Indentation Method for Nanoprecision Measurement of Diamond Tool Edge Radius
2
作者 X P Li M Rahman +2 位作者 K Liu K S Neo C C Chan 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期98-99,共2页
In ductile mode cutting of brittle materials using di amond tools, such as ductile cutting of silicon and quartz for wafer fabrication , one of the key conditions for achieving ductile chip formation is to get the r i... In ductile mode cutting of brittle materials using di amond tools, such as ductile cutting of silicon and quartz for wafer fabrication , one of the key conditions for achieving ductile chip formation is to get the r ight ratio of tool cutting edge radius to the undeformed chip thickness. It has been shown that the undeformed chip thickness has to be in the order of nanomete rs and that the tool cutting edge radius has to be smaller than the undeformed c hip thickness. Therefore, nanoprecision measurement of diamond cutting tools has become a key issue for ductile mode cutting of brittle materials. In this paper , a non-destructive nanoprecision measurement method for diamond tool cutting e dge radius is presented. The basis of the method is that the exact profile of th e tool cutting edge can be perfectly copied by indenting the tool cutting edge o n the surface of a rigid-perfect plastic material, and that the copy of the pro file can be measured at nanoprecision level. Ideally, the first aspect of th e method is to make a perfect copy of the tool cutting edge profile by indentati on on the surface of a rigid-perfect plastic material which has no elastic spri ng back, so that a true copy of the tool cutting edge is maintained for subseque nt measurement. Since no rigid-perfect plastic material can be found in realit y, actual materials of rigid-elastic-plastic nature have to be used for the in dentation in the measurement method, and the material elastic error compensation coefficients have to be determined to cancel out the effect of elastic spring b ack. For the minimization of error compensation, criteria for the selection of t he optimal materials for the indentation measurement are found to be: 1) high ri gidity and high density, 2) large Young’s elastic modulus, and 3) low yield strength. One of such materials identified is copper. The second aspect of the method is to measure the radius of the indented profile on the surface of the ma terial. This can be achieved by using an atomic force microscope (AFM), and in t his paper the results for measurement of diamond tool edge radii of nanometer sc ales by indentation on a copper material are presented. The elastic error compen sation coefficient for the copper material is determined through the indentation of a tungsten carbide tool edge on the copper surface. By comparing the actual tool edge radius measured using SEM on the sectional view of the tungsten carbid e tool with the one measured from the copied profile of the tool edge on the cop per surface, the coefficient is obtained. Analysis is given for the accuracy of the proposed method, showing that as far as the elastic compensation coefficient is consistent with the material used for the indentation measurement, the only source of errors with the measurement will come from the device for measuring th e indented profile on the surface of the solid, in this case it will come from t he AFM which measures on the sub-nanometer scales. 展开更多
关键词 nanoprecision measurement INDENTATION diamond tool cutting edge radius ductile mode cutting
下载PDF
Surface Waviness in Grinding of Thin Mould Insert Using Chilled Air as Coolant
3
作者 Yeo S H K Ramesh 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期105-106,共2页
On going trend of miniaturization in electronic rel at ed parts, which is an average of two times in every 5~7 years introduce grindin g challenges. In grinding process, the surface waviness control of thin parts is ... On going trend of miniaturization in electronic rel at ed parts, which is an average of two times in every 5~7 years introduce grindin g challenges. In grinding process, the surface waviness control of thin parts is an ardent task due to its warpage, induced by the high specific grinding energy (2~10 J/mm 3). Therefore, coolant is often used to avoid thermal damage, obtai n better surface integrity and to prolong wheel life. However coolant, the incomp ressibility media introduce high forces at the grinding zone creating dimensiona l as well as shape instability. In view of these situations chilled air was ap plied in place of conventional coolant. The chilled air is produced using a two -stage vapor compression refrigeration cycle with characteristics of: temperatu re -35 ℃, pressure 0.2~0.3 MPa and flow rate 0.4 m 3/min. Also traces of eco - oil mist that encompass the chilled air are supplied to the grinding zone. B oth chilled air and eco-oil mist are applied through two independent paths of a specially designed twin compartment nozzle for maximizing the penetration. This paper investigates the grinding characteristics of mold insert which is closer to M2 tool steel (component widely used in connector industries) when using chil led air as coolant media. Grinding experiments were conducted using a vitrified bond CBN wheel (B91N100V) and a surface grinder. Initial study was focussed on establishing the most suita ble clamping method for the thin mold insert. FEM analysis and grinding experime nt studies were performed to quantitatively analyze the clamping induced deflect ion. Waviness value (W t) of (24~62) μm was achieved for resin clampi n g whereas (4~8) μm, (4~6) μm were achieved for magnetic and wax clamping res pe ctively. Wax clamping is predominantly used in all the grinding experiments that characterize the grinding process, which use chilled air as the coolant media. Between 0.15 to 0.9 mm 3/mm.s of specific material removal rate, ground sur face temperature of mold insert was increased from 0.3 ℃ to 59.7 ℃ for chi lled air. For the similar grinding conditions with the coolant fluid an increase from 0.9 ℃ to 14.4 ℃ was recorded. With increase of specific material removal rate from 0.15 to 0.65 mm 3/mm.s, F t/F n ratio was increased from (0.2 to 0.4), (0.6 to 1.67) for wet coolant and chilled air respectively. Despite of high F t/F n ratio and ground surface temperature, chilled air method has shown a surface waviness, W t from (2 to 5.6) μm. Microstructure examination of chilled air produced ground surface was comparable to those of using coolant fluids. Surface finish, R a of (0.45~0.7) μm was achieved for mold insert . This work will enable to have clear understanding about the quantitative influe nce of chilled air as well as the clamping method against the surface waviness o f thin mold insert. 展开更多
关键词 In Surface Waviness in Grinding of Thin Mould Insert Using Chilled Air as Coolant
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部