期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Corrosion Behavior of Cenosphere Reinforced Al7075 Metal Matrix Composite
—An Experimental Approach
被引量:1
1
作者 Ravi Kumar D. V.   Seenappa   +1 位作者 C. R. Prakash Rao V. Bharat 《Journal of Minerals and Materials Characterization and Engineering》 2018年第3期424-437,共14页
Aluminum-based metal matrix composites (MMCs) are considered in several technological applications owing to their enhanced mechanical properties when compared with monolithic metals. Research on the mechanical propert... Aluminum-based metal matrix composites (MMCs) are considered in several technological applications owing to their enhanced mechanical properties when compared with monolithic metals. Research on the mechanical properties MMCs was done by many researchers;however in depth study on the oxidation behavior of cenosphere, reinforced MMCs are required, since the application of Aluminum-based MMCs is extensively used in applications like automobile, navigation and aviation, where the demand on light weight corrosion resistance material is very much required. In the present work varied compositions of Al7075 grade Aluminum-cenosphere composites use liquid metallurgy route adopting stir casting approach. The experimental study was aimed at experimental investigations of developed composites under different corrosive environments. The corrosion tests were carried out as per ASTM standards. Salt spray test using NaCl was carried out as per ASTM B117 and immersion tests using NaCl and NaOH as corrodents were carried out by following ASTM G31 standards. The results obtained from the tests revealed that as increase in weight % of reinforcement, corrosion resistance increases up to 7.5% reinforcement, and further the corrosion resistance decreases marginally. Solution heat treated samples exhibited higher resistance to oxidation than cast samples in all corrosive environments. The SEM images show the presence of micro cracks and occurrence of pitting corrosion on the corrosion tested specimens. 展开更多
关键词 Al7075 CENOSPHERE Metal Matrix Composites NACL NAOH SALT SPRAY Test Corrosion Wear
下载PDF
Influence of Machining Parameter on Tool Life While Machining Hybrid Metal Matrix Composites 被引量:1
2
作者 C. R. Prakash Rao V. Ravi Kumar +3 位作者 D. V. Ravi Kumar Poorna Chandra M. Vedavyasa M. S. Rajagopal 《Journal of Minerals and Materials Characterization and Engineering》 2020年第6期440-458,共19页
<span style="font-family:Verdana;">A metal matrix composite constitutes a continuous metallic matrix and a </span><span style="font-family:Verdana;">discontinuous phase known as r... <span style="font-family:Verdana;">A metal matrix composite constitutes a continuous metallic matrix and a </span><span style="font-family:Verdana;">discontinuous phase known as reinforcement. The hybrid metal matrix composites</span><span style="font-family:Verdana;"> (Hmmcs) have been used to manufacture drive shafts, disc brake rotors, brake drums, connecting rods pistons, engine block cylinder liners for automotive and rail vehicle applications. The Hmmcs castings of diameter 120 mm and length 300 mm were prepared through sand mould technique following stir casting methodology. The cast components further subjected to evaluation of physical properties and machining tests using two grades of coated inserts and PCD inserts. The experiments were carried out following ISO 3685 standards. The coating thickness of the TiN coated and TiAlN coated inserts were measured using Kalo testing method</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">;</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the results of the test show that the interface of the substrate and coating was free from the porosity, and the coating thickness of TiN coating was 4.84 microns and TiAlN coating was measured 4.6 microns. The results of the experiments show that performance of the PCD insert was better than coated inserts at 0.1 mm/rev feed</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">;</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> however at 0.2 mm/revolution feed PCD insert failed by micro chipping of cutting edge while machining Hmmcs. When TiAlN coated inserts were used to machine Hmmcs the coated inserts failed by gradual wear and BUE formation. 展开更多
关键词 COMPOSITES Hybrid Metal Matrix Composites Coated Inserts PCD Inserts TURNING Tool Life Testing
下载PDF
Influence of Boron Fiber Powder and Graphite Reinforcements on Physical and Mechanical Properties of Aluminum 2024 Alloy Fabricated by Stir Casting
3
作者 H. S. Kumaraswamy Vinjamuri Bharat T. Krishna Rao 《Journal of Minerals and Materials Characterization and Engineering》 2019年第3期103-116,共14页
In this study, boron fiber powder and graphite is reinforced to Al 2024 alloy to develop hybrid metal matrix composite by stir casting process. Hybrid MMCs developed with different weight fraction for 4%, 6%, 8% and 1... In this study, boron fiber powder and graphite is reinforced to Al 2024 alloy to develop hybrid metal matrix composite by stir casting process. Hybrid MMCs developed with different weight fraction for 4%, 6%, 8% and 10% of boron fiber and 2% of graphite. Stirring parameters are optimized to obtain solid casting. Reinforcements are poured into molten aluminium at 15 g/min and stirrer is rotated for 5 minutes at 250 rpm with two stages stirring. 1% of magnesium was added to improve the wettability of Al 2024. Cast samples are machined as per the standards to investigate the microstructure, physical and mechanical properties. Optical and SEM analysis was carried out on machined sample to study the uniform distribution of particles. XRD and EDAX analysis is carried out to confirm the dispersion of particles into the matrix. Uniform distribution of the particles is found in optical and SEM images for these stirring parameters. The peak representation of boron and graphite particles is also observed in XRD and EDAX analysis. Theoretical and experimental density of the cast sample is determined by rule of mixture and Archimedes principle. Result shows the density of the composite decreases by increasing percentage of reinforcements. Micro Vickers hardness was tested on the cast composites and the result showed Al 2024 alloy hardness was increased by 31.25% by reinforcing boron and graphite. Similarly, tensile and compression strength increased by increasing the percentage of reinforcement. Tensile and compression strength of Al 2024 alloy increased by 45.23% and 29.18% respectively. The ductility of the composites decreased by increasing the percentage of reinforcements. 展开更多
关键词 Al 2024 Boron GRAPHITE STIR Casting SEM EDAX Micro VICKERS Hardness Tensile STRENGTH and Compression STRENGTH
下载PDF
Effect of Heat Treatment on Tensile and Corrosion Properties of LM6 Hybrid Metal Matrix Composite Reinforced with Cenosphere and Red Mud
4
作者 Ravi Kumar V. Suresh R. +2 位作者 Prakash Rao C. R. Ravi Kumar D. V. Bharat V. 《Journal of Minerals and Materials Characterization and Engineering》 2019年第1期1-17,共17页
The increased expectation of automotive, aviation and marine industries pertaining to the enhanced properties and their use in elevated temperature conditions and also corrosive environments leads to the development o... The increased expectation of automotive, aviation and marine industries pertaining to the enhanced properties and their use in elevated temperature conditions and also corrosive environments leads to the development of the newer material to meet the requirements. The requirements of the automobile and marine applications call for the increased mechanical properties and lower density accompanied with higher resistance to oxidation. Hence the present research work is aimed at the development of Hybrid metal matrix composites (HMMCs) using low-density base material and reinforcements. The aluminum of grade LM6 is preferred material in automobile industries, because it can be cast to any complex geometry and possess good machinability, further upon heat treatment, the properties of LM6 alloy can be enhanced to meet the industry requirements. However, requirements of automobile industries consist of increased mechanical properties, lower density and higher corrosion resistance. Hence, in the present research work, it is aimed to develop newer composite material using LM 6 grade Aluminum alloy as matrix material which is reinforced with varied percent Cenosphere and Red mud. 展开更多
关键词 LM6 Alloy CENOSPHERE Red MUD HMMCs TENSILE TEST NaCl NAOH Salt Spray TEST Immersion CORROSION TEST
下载PDF
Microstructure, Dislocation Density and Thermal Expansion Behavior Using Thermo Elastic Models of Zircon Sand Reinforced as Cast ZA-27 Composites
5
作者 G. R. Gurunagendra V. Bharat +3 位作者 B. R. Raju D. G. Amith Vijayakumar Pujar C. Ravi Keerthi 《Journal of Minerals and Materials Characterization and Engineering》 2021年第1期100-115,共16页
In the present work stir casting route is used to fabricate the ZA27 Metal matrix composites containing 3 wt%, 6 wt%, 9 wt%, and 12 wt%. Zircon sand particulates of size 100 mesh. Microstructure studies using Optical ... In the present work stir casting route is used to fabricate the ZA27 Metal matrix composites containing 3 wt%, 6 wt%, 9 wt%, and 12 wt%. Zircon sand particulates of size 100 mesh. Microstructure studies using Optical Microscopy, SEM-EDAX are carried out to ascertain the distribution and morphology of particulates in the composites. Effect of zircon sand as reinforcement on bulk density, porosity, of the fabricated composites is studied. SEM studies are carried out to understand the behavior of as-cast ZA27 alloy reinforced with zircon sand. The dislocation density of the fabricated composite affects the strength of the composites and depends on the strain due to thermal mismatch and is found to increase with increase in weight% of zircon sand. However, it does not consider casting defects of voids/clustering observed in micrographs of the fabricated composite. Porosity in composites does not have influence on Coefficient of thermal expansion (CTE) of the ZA27 composites studied using thermoelastic models like Kerner and turner model and rule of mixtures of composite. 展开更多
关键词 DENSITY POROSITY Dislocation Density Thermoelastic Models Rule of Mixtures
下载PDF
Optimization of Wear Factors of Aluminium Hybrid Metal Matrix Composites Using Taguchi Method
6
作者 P. B. Asha Sneha Sarika Murthy +3 位作者 C. R. Prakash Rao V. Ravi Kumar R. Kiran C. N. Suresha 《Journal of Minerals and Materials Characterization and Engineering》 2021年第1期38-47,共10页
Hybrid metal matrix composites (Hmmc) are found to be more superior than the conventional composite materials because of their improved mechanical properties, which can be suited for an extensive range of engineering ... Hybrid metal matrix composites (Hmmc) are found to be more superior than the conventional composite materials because of their improved mechanical properties, which can be suited for an extensive range of engineering applications. Automobile and aerospace industries widely make use of hybrid composites as they possess excellent corrosion, wear resistance, low density, and high strength. This paper displays the strategy to build the hybrid composite utilizing Stir casting Method. Present investigation includes the creation of composites utilizing boron carbide (2%, 4%, 6% volume) and Red mud (2% volume) as the reinforcements and Structural aluminium as the matrix. Experimental investigation of wear analysis of the composites was carried out according to the L9 Taguchi method. The designated number of experiments was accomplished to probe the impact of control factors on the specific wear rate (SWR) of the developed composites. ANOVA was carried out and Wt%. Reinforcement was found to be the decisive factor on the SWR of the developed hybrid composite. The Confirmatory test was successfully carried out and the computed error was found to be varying from 0.878% to 2.58%. 展开更多
关键词 Taguchi ANNOVA WEAR Signal-to-Noise Ratio Hybrid Metal Matrix Composite
下载PDF
Fabrication, Characterization and Machining of Al6061 Reinforced with Red Mud Composite
7
作者 Poorna Chandra V. Ravi Kumar +3 位作者 R. Kiran D. V. Ravi Kumar C. R. Prakash Rao R. Suresh 《Journal of Minerals and Materials Characterization and Engineering》 2022年第1期28-42,共15页
The Metal Matrix Composites application has increased in many areas of science and technology, because of its additional physical, wear and mechanical properties. In comparison with all MMC’s, aluminum-based MMC’s a... The Metal Matrix Composites application has increased in many areas of science and technology, because of its additional physical, wear and mechanical properties. In comparison with all MMC’s, aluminum-based MMC’s are finding wide applications due to their better strength to weight ratio, better stiffness, and high thermal conductivity as well as very good wear and corrosion properties. The properties of a composite mainly depend on better distribution of reinforcement in the matrix, which is very difficult to achieve. Basically Redmud is a byproduct of alumina, and it is waste product obtained during Bayer’s process. This waste product must be recycled else it may be dangerous to the environment. Redmud can be used as reinforcement for aluminium composites in order to achieve better properties. The proposed research work includes preparation of Aluminum 6061-Red mud metal matrix composites using liquid metallurgy route following stir casting technique. An alloy Al6061 containing 0.60 percent silicon and Magnesium of 0.82 percent was used as the matrix material. Two different compositions of the Aluminum 6061-Red mud composites are prepared in addition to the base matrix and evaluated for mechanical properties also the force acting on the cutting tool at different spindle speeds during machining of the composite materials were analyzed. 展开更多
关键词 Al6061 Redmud MACHINING MMC’s Cutting Force Measurement
下载PDF
Experimental Study on Polymer Nanocomposites Based Strain Sensors for Structural Health Monitoring
8
作者 R. Kiran K. R. Prakash +3 位作者 Poorna Chandra V. Ravi Kumar P. B. Asha C. R. Prakash Rao 《Journal of Minerals and Materials Characterization and Engineering》 2021年第5期512-527,共16页
The aim is to develop a mechanically flexible polymer nanocomposite film-based strain sensors that could act towards sustainable structural health monitoring for civil structures. The developed polymer nanocomposite f... The aim is to develop a mechanically flexible polymer nanocomposite film-based strain sensors that could act towards sustainable structural health monitoring for civil structures. The developed polymer nanocomposite film combinations will be monitored for their structural, electrical and mechanical behaviors and the optimized formulations will be tried for strain sensing applications. The films were cast by using PVA as the base polymer and copper doped silver nitrate as the nanofiller along with the use of glycine as fuel which is a combination of silver and copper nitrate. After preparing the films, they were tested for conductivity under tensile loading using a digital multi meter connected to a UTM. The samples were subjected to XRD, FTIR and SEM for further analysis. The results of the experiments shown I-V characteristics of PVA-CuAgO composites from 5% to 25% CuAgO have been increased tremendously with the incorporation of filler material. For 100 V, the maximum current value obtained for plain PVA is only 7.7E-8 A, whereas CuAgO particles shown 0.0025 A at 5% reinforcements and further increased nearly to 0.025 A for 25% of CuAgO particles into the PVA matrix. 展开更多
关键词 POLYMER NANOCOMPOSITES
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部