Power transmission across the sea is an important part of global energy interconnection(GEI).To support the construction of GEI and to serve the needs of future clean energy trans-sea transportation and offshore wind ...Power transmission across the sea is an important part of global energy interconnection(GEI).To support the construction of GEI and to serve the needs of future clean energy trans-sea transportation and offshore wind power development,this study a)analyzes the requirements of the GEI backbone network pertaining to direct current(DC)submarine cable technology,and b)defines the key technical and economic indices of ultrahigh-voltage direct current(UHVDC)submarine cable based on theoretical computations.The research is based on the thermoelectric coupling model and the finite element method.It is shown that the dielectric strength of the insulating materials of the±800 kV~±1100 kV/4000 MW^12000 MW UHVDC submarine cable(extrusion insulation)should be not less than 43~65 kV/mm,while the heat resistance is not less than 110°C.As the cost of submarine cable is 5~10 times higher than that of the overhead line,the project investment need to be decreased to a level within the economical carrying capacity to guarantee extensive applicability of the HVDC submarine cable technology.展开更多
Environmental problems caused by traditional power production and the unbalanced distribution of energy resources and demand limit the development of sustainable societies. A feasible method to optimize the resource a...Environmental problems caused by traditional power production and the unbalanced distribution of energy resources and demand limit the development of sustainable societies. A feasible method to optimize the resource allocation has been proposed, and it involves cross-border and cross-regional electricity transactions. However, the uncertainty of renewable energy and the specific features of the cross-border electricity market are key issues which need to be considered in the trading mechanism design. Based on this, this paper sets up a long-term cross-border electricity trading model considering the uncertainty of renewable energy. First, annual transactions are matched according to the declared data of bidders with consideration of cross-border interconnection development benefits, potential benefit risks, and transmission costs. Second, for annual contract decomposition, the model uses the minimum generation cost function with a penalty item for power shortages to allocate electricity to each month. Additionally, the scenario reduction algorithm is combined with the unit commitment to construct a stochastic generation plan. Finally, a case study of the numerical results for the multinational electricity market in northeast Asia is used to show that the proposed trading model is feasible for cross-border electricity trading with high penetration of renewable energy.展开更多
The development of Global Energy Interconnection(GEI)is essential for supporting a wide range of basic data resources.The Global Energy Interconnection Development and Cooperation Organization has established a compre...The development of Global Energy Interconnection(GEI)is essential for supporting a wide range of basic data resources.The Global Energy Interconnection Development and Cooperation Organization has established a comprehensive data center covering six major systems.However,methods for accurately describing and scientifically evaluating the credibility of the massive amount of GEI data remain underdeveloped.To address this lack of such methods,a GEI data credibility quantitative evaluation model is proposed here.An evaluation indicator system is established to evaluate data credibility from multiple perspectives and ensure the comprehensiveness and impartiality of evaluation results.The Cloud Model abandons the hard division of comments to ensure objectivity and accuracy in evaluation results.To evaluate the suitability of the proposed method,a case analysis is conducted,wherein the proposed method demonstrates sufficient validity and feasibility.展开更多
In order to meet the pressing demand for wide-area communication required by the Global Energy Interconnection(GEI),accelerating the construction of satellite-terrestrial Integra怕d networks that can achieve network e...In order to meet the pressing demand for wide-area communication required by the Global Energy Interconnection(GEI),accelerating the construction of satellite-terrestrial Integra怕d networks that can achieve network extension and seamless global coverage has become the focus of power communication tech no logy development.In this study,we propose a satellite-terrestrial integrated network model that can support interconnection and interoperation on the IP layer between the satellite system and the怕rrestrial segment of the existing power communication system.First,the composition and function of the satellite-terrestrial collaborative network are explained.Then,the IP-based protocol stack is described,and a typical applicati on experime nt is con ducted to illustrate the particular process of this protocol stack.Fin ally,a use case of IP interconn ection that depends on GEO satellite communication is detailed.The experime ntal study has showed that the satellite-terrestrial collaborative network can efficiently support various IP applications for the GEI.展开更多
Under the background of sustainable energy transition and environmental protection,Global Energy Interconnection(GEI),which features an innovative combination of clean energy(e.g.,solar power) and ultra-high voltage(U...Under the background of sustainable energy transition and environmental protection,Global Energy Interconnection(GEI),which features an innovative combination of clean energy(e.g.,solar power) and ultra-high voltage(UHV) transmission technologies,provides a means to realize global climate governance.China is a large country with unevenly distributed water resources,energy production,and energy consumption,and the large areas of desert in northern and western China have the potential for installing large-scale solar power plants.This study analyzed the potential of using large-scale solar power from deserts to coastal seawater desalination plants,which could alleviate the freshwater crisis and control desertification in China.First,the measurement data from NASA were used to estimate the potential exploitable amount of solar energy in desert areas.A macro idea was proposed for the transmission of electrical power from inland integrated energy bases to coastal seawater desalination and pumping of freshwater to western China to combat desertification and alleviate the freshwater crisis.Based on this,the electricity demands for desalination and water redistribution were estimated.As a huge interruptible load,desalination and pumping systems could be used to suppress power fluctuations of the integrated energy bases.Finally,the fundamental support roles of UHV grids in large-scale renewable energy allocation and utilization were discussed.This analysis offers a theoretical framework to help realize efficient renewable energy generation and consumption and alleviate freshwater shortage.展开更多
Global Energy Interconnection(hereafter GEI) is not only connectivity of power grid, but also a series of methodical innovations for energy transition towards sustainable and resilient societies,which is different fro...Global Energy Interconnection(hereafter GEI) is not only connectivity of power grid, but also a series of methodical innovations for energy transition towards sustainable and resilient societies,which is different from the traditional energy development mode in the past. This paper seeks to summarize the key features about the abovementioned innovations, as Green & Clean, Balanced & Reciprocal, Efficient & Intelligent and Vitality & Business opportunity. Finally it puts forward some reflections on the future development of GEI based on ASEAN practice cases.展开更多
In recent years, the global energy interconnection(GEI) has more and more profound influence around the world, which is a highly practical way for humans to handle the energy crisis. In the studies of GEI, the economi...In recent years, the global energy interconnection(GEI) has more and more profound influence around the world, which is a highly practical way for humans to handle the energy crisis. In the studies of GEI, the economic dispatch(ED) is a basic and important content. In this paper, a model of dynamic economic dispatch(DED) of GEI is presented, which include the renewable energy generation. The objective function of this model is composed of the operating costs and the renewable energy curtailment. A series of case studies for the transnational energy interconnection in Northeast Asia are given to verify the superiority of GEI and for further analysis.展开更多
Resources scarcity,environmental pollution and climate change pose a great threat to the survival and development of humanity.The fundamental way out is innovation.Chinese President Xi Jinping proposed'discussions...Resources scarcity,environmental pollution and climate change pose a great threat to the survival and development of humanity.The fundamental way out is innovation.Chinese President Xi Jinping proposed'discussions on establishing Global Energy Interconnection,or GEI to facilitate efforts to meet global power demand with clean and green alternatives'at the UN Sustainable Development展开更多
With the rapid development of technologies such as big data and cloud computing,data communication and data computing in the form of exponential growth have led to a large amount of energy consumption in data centers....With the rapid development of technologies such as big data and cloud computing,data communication and data computing in the form of exponential growth have led to a large amount of energy consumption in data centers.Globally,data centers will become the world’s largest users of energy consumption,with the ratio rising from 3%in 2017 to 4.5%in 2025.Due to its unique climate and energy-saving advantages,the high-latitude area in the Pan-Arctic region has gradually become a hotspot for data center site selection in recent years.In order to predict and analyze the future energy consumption and carbon emissions of global data centers,this paper presents a new method based on global data center traffic and power usage effectiveness(PUE)for energy consumption prediction.Firstly,global data center traffic growth is predicted based on the Cisco’s research.Secondly,the dynamic global average PUE and the high latitude PUE based on Romonet simulation model are obtained,and then global data center energy consumption with two different scenarios,the decentralized scenario and the centralized scenario,is analyzed quantitatively via the polynomial fitting method.The simulation results show that,in 2030,the global data center energy consumption and carbon emissions are reduced by about 301 billion kWh and 720 million tons CO2 in the centralized scenario compared with that of the decentralized scenario,which confirms that the establishment of data centers in the Pan-Arctic region in the future can effectively relief the climate change and energy problems.This study provides support for global energy consumption prediction,and guidance for the layout of future global data centers from the perspective of energy consumption.Moreover,it provides support of the feasibility of the integration of energy and information networks under the Global Energy Interconnection conception.展开更多
In order to quantify the contribution of the mitigation strategies,an extended Kaya identity has been proposed in this paper for decomposing the various factors that influence the CO2 emission.To this end,we provided ...In order to quantify the contribution of the mitigation strategies,an extended Kaya identity has been proposed in this paper for decomposing the various factors that influence the CO2 emission.To this end,we provided a detailed decomposition of the carbon intensity and energy intensity,which enables the quantification of clean energy development and electrification.The logarithmic mean divisia index(LMDI)has been applied to the historical data to quantify the contributions of the various factors affecting the CO2 emissions.Further,the global energy interconnection(GEI)scenario has been introduced for providing a systematic solution to meet the 2℃goal of the Paris Agreement.By combining LMDI with the scenario analysis,the mitigation potential of the various factors for CO2 emission has been analyzed.Results from the historical data indicate that economic development and population growth contribute the most to the increase in CO2 emissions,whereas improvement in the power generation efficiency predominantly helps in emission reduction.A numerical analysis,performed for obtaining the projected future carbon emissions,suggests that clean energy development and electrification are the top two factors that can decrease CO2 emissions,thus showing their great potential for mitigation in the future.Moreover,the carbon capture and storage technology serves as an important supplementary mitigation method.展开更多
Decarbonization of the electricity sector is crucial to mitigate the impacts of climate change and global warming over the coming decades.The key challenges for achieving this goal are carbon emission trading and elec...Decarbonization of the electricity sector is crucial to mitigate the impacts of climate change and global warming over the coming decades.The key challenges for achieving this goal are carbon emission trading and electricity sector regulation,which are also the major components of the carbon and electricity markets,respectively.In this paper,a joint electricity and carbon market model is proposed to investigate the relationships between electricity price,carbon price,and electricity generation capacity,thereby identifying pathways toward a renewable energy transition under the transactional energy interconnection framework.The proposed model is a dynamically iterative optimization model consisting of upper-level and lower-level models.The upper-level model optimizes power generation and obtains the electricity price,which drives the lower-level model to update the carbon price and electricity generation capacity.The proposed model is verified using the Northeast Asia power grid.The results show that increasing carbon price will result in increased electricity price,along with further increases in renewable energy generation capacity in the following period.This increase in renewable energy generation will reduce reliance on carbon-emitting energy sources,and hence the carbon price will decline.Moreover,the interconnection among zones in the Northeast Asia power grid will enable reasonable allocation of zonal power generation.Carbon capture and storage (CCS) will be an effective technology to reduce the carbon emissions and further realize the emission reduction targets in 2030-2050.It eases the stress of realizing the energy transition because of the less urgency to install additional renewable energy capacity.展开更多
Climate change and air pollution are primarily caused by the combustion and utilization of fossil fuels.Both climate change and air pollution cause health problems.Based on the development of China,it is extremely imp...Climate change and air pollution are primarily caused by the combustion and utilization of fossil fuels.Both climate change and air pollution cause health problems.Based on the development of China,it is extremely important to explore the synergies of the energy transition,CO_(2) reduction,air pollution control,and health improvement under the target of carbon peaking before 2030 and carbon neutrality before 2060.This study introduces the policy evolution and research progress related to energy,climate change,and the environment in China and proposes a complete energy-climate-air-health mechanism framework.Based on the MESSAGE-GLOBIOM integrated assessment model,emission inventory and chemical transport model,and exposure-response function,a comprehensive assessment method of energy-climate-air-health synergies was established and applied to quantify the impacts of Chinese Energy Interconnection Carbon Neutrality(CEICN)scenario.The results demonstrate that,by 2060,the SO_(2),NO_(x) and PM_(2.5) emissions are estimated to be reduced by 91%,85%,and 90%respectively compared to the business-as-usual(BAU)scenario.The direct health impacts brought by achieving the goal of carbon neutrality will drive the proactive implementation of more emission reduction measures and bring greater benefits to human health.展开更多
Climate change is becoming an important issue in all fields of infrastructure development.Electricity plays a core role in the decarbonized energy system’s path to a regional zero-emission pattern.A well-built trans-...Climate change is becoming an important issue in all fields of infrastructure development.Electricity plays a core role in the decarbonized energy system’s path to a regional zero-emission pattern.A well-built trans-Mediterranean backbone grid can hedge the profound evolution of regional power generation,transmission,and consumption.To date,only Turkey and the Maghreb countries(i.e.,Morocco,Algeria,and Tunisia)are connected with the Continental European Synchronous Area.Other south-and east-shore countries have insufficient interconnection infrastructures and synchronization difficulties that have proven to be major hurdles to the implementation of large-scale solar and wind projects and achievement of climate goals.This study analyzes the current trans-boundary grid interconnections and power and carbon emission portfolios in the Mediterranean region.To align with the recently launched new climate target‘Fit for 55’program and the accelerated large-scale renewables target,a holistic review of projected trans-Mediterranean grids and their market,technical,and financial obstacles of implementation was conducted.For south-and east-shore countries,major legal and regulatory barriers encompassing non-liberalized market structure,regulation gaps of taxation and transmission tariffs,and the private sector’s access rights need to be removed.Enhancement of domestic grids,substations,and harmonized grid codes and frequency,voltage,and communication technology standards among all trans-Mediterranean countries are physical prerequisites for implementing the Trans-Mediterranean Electricity Market.In addition,the mobilization of capital instruments along with private and international investments is indispensable for the realization of supranational transmission projects.As the final section of the decarbonization roadmap,the development of electric appliances,equipment,and vehicles with higher efficiency is inevitable in the decarbonized building,transportation,and industry sectors.展开更多
Since the establishment of diplomatic relations between China and Brazil,building clean energy system and exploring a green development path have always been an important part of bilateral relations.The Itaipu Hydroel...Since the establishment of diplomatic relations between China and Brazil,building clean energy system and exploring a green development path have always been an important part of bilateral relations.The Itaipu Hydroelectric Dam jointly built by Brazil and Paraguay had provided valuable experience for the design and construction of the Three Gorges Dam.Brazilian companies participated in the building of many hydropower stations in China in the 1990s.As Chinese energy enterprises are accelerating their pace of going global,China’s investment in Brazil’s power sector has gradually increased since 2010,and various advanced Chinese technologies have been introduced to Brazil.Although China and Brazil are thousands of miles apart,they have gained greater room for cooperation in the context of a technology-driven energy revolution,benefiting the people of both countries while making positive contributions to global climate governance.展开更多
Energy cooperation is a key area in the joint construction of the Belt and Road Initiative.To deepen international energy cooperation,it is advisable to place greater emphasis on whole life cycle and systematic planni...Energy cooperation is a key area in the joint construction of the Belt and Road Initiative.To deepen international energy cooperation,it is advisable to place greater emphasis on whole life cycle and systematic planning in project collaboration,government-led initiatives with businesses playing a central role,alongside coordination with non-governmental international institutions,and comprehensive integration of resources.展开更多
Cross-border grid interconnection is a critical means to achieve wide-area share of hydro and other clean energy.Economic benefit assessment of cross-border grid interconnection projects should be carefully performed ...Cross-border grid interconnection is a critical means to achieve wide-area share of hydro and other clean energy.Economic benefit assessment of cross-border grid interconnection projects should be carefully performed during early stage.In this paper,a method based on cost-benefit economic assessment for optimal planning of cross-border grid interconnection is proposed.An economic index for comprehensively assessing the cost of a transmission project and its resulting benefits of more usage of hydro energy is designed first.A chronological production cost simulation model considering hydro energy spillage due to transmission congestion and thermal operational limitation is then proposed to calculate the economic index.A case study is performed using the proposed method to determine the optimal capacity of a potential transmission link between Brazil and Argentina,which have rich and complementary hydro energy resources.展开更多
There has been an intense discussion on the energy infrastructure cooperation in Northeast Asia.Most studies have focused on the technical feasibility of grid interconnection,deployment of renewable energy,and have ig...There has been an intense discussion on the energy infrastructure cooperation in Northeast Asia.Most studies have focused on the technical feasibility of grid interconnection,deployment of renewable energy,and have ignored the quantitative analysis of social and economic benefits of these proposals.This study uses a computable general equilibrium model to evaluate the effects of energy interconnection in Northeast Asia.Key model development tasks include 1)constructing a new nesting structure,2)econometrically estimating the constant elasticities of substitution(CES)between fossil-and non-fossil-power generation bundles,3)developing a new base-case scenario,and 4)developing the policy scenario.We found that while Northeast Asia will benefit from energy interconnection development with higher GDP than in the base-case;there will be a trade-off between higher investment and lower consumption.Sector results and environmental implications in this region are also discussed.展开更多
Electric system planning with high variable renewable energy(VRE)penetration levels has attracted great attention world-wide.Electricity production of VRE highly depends on the weather conditions and thus involves lar...Electric system planning with high variable renewable energy(VRE)penetration levels has attracted great attention world-wide.Electricity production of VRE highly depends on the weather conditions and thus involves large variability,uncertainty,and low-capacity credit.This gives rise to significant challenges for power system planning.Currently,many solutions are proposed to address the issue of operational flexibility inadequacy,including flexibility retrofit of thermal units,inter-regional transmission,electricity energy storage,and demand response(DR).Evidently,the performance and the cost of various solutions are different.It is relevant to explore the optimal portfolio to satisfy the flexibility requirement for a renewable dominated system and the role of each flexibility source.In this study,the value of diverse DR flexibilities was examined and a stochastic investment planning model considering DR is proposed.Two types of DRs,namely interrupted DR and transferred DR,were modeled.Chronological load and renewable generation curves with 8760 hours within a whole year were reduced to 4 weekly scenarios to accelerate the optimization.Clustered unit commitment constraints for accommodating variability of renewables were incorporated.Case studies based on IEEE RTS-96 system are reported to demonstrate the effectiveness of the proposed method and the DR potential to avoid energy storage investment.展开更多
In recent years,renewable energy technologies have been developed vigorously,and related supporting policies have been issued.The developmental trend of different energy sources directly affects the future development...In recent years,renewable energy technologies have been developed vigorously,and related supporting policies have been issued.The developmental trend of different energy sources directly affects the future developmental pattern of the energy and power industry.Energy trend research can be quantified through data statistics and model calculations;however,parameter settings and optimization are difficult,and the analysis results sometimes do not reflect objective reality.This paper proposes an energy and power information analysis method based on emotion mining.This method collects energy commentary news and literature reports from many authoritative media around the world and builds a convolutional neural network model and a text analysis model for topic classification and positive/negative emotion evaluation,which helps obtain text evaluation matrixes for all collected texts.Finally,a long-short-term memory model algorithm is employed to predict the future development prospects and market trends for various types of energy based on the analyzed emotions in different time spans.Experimental results indicate that energy trend analysis based on this method is consistent with the real scenario,has good applicability,and can provide a useful reference for the development of energy and power resources and of other industry areas as well.展开更多
To achieve carbon neutrality by 2060,decarbonization in the energy sector is crucial.Hydrogen is expected to be vital for achieving the aim of carbon neutrality for two reasons:use of power-to-hydrogen(P2H)can avoid c...To achieve carbon neutrality by 2060,decarbonization in the energy sector is crucial.Hydrogen is expected to be vital for achieving the aim of carbon neutrality for two reasons:use of power-to-hydrogen(P2H)can avoid carbon emissions from hydrogen production,which is traditionally performed using fossil fuels;Hydrogen from P2H can be stored for long durations in large scales and then delivered as industrial raw material or fed back to the power system depending on the demand.In this study,we focus on the analysis and evaluation of hydrogen value in terms of improvement in the flexibility of the energy system,particularly that derived from hydrogen storage.An electricity-hydrogen coupled energy model is proposed to realize the hourly-level operation simulation and capacity planning optimization aiming at the lowest cost of energy.Based on this model and considering Northwest China as the region of study,the potential of improvement in the flexibility of hydrogen storage is determined through optimization calculations in a series of study cases with various hydrogen demand levels.The results of the quantitative calculations prove that effective hydrogen storage can improve the system flexibility by promoting the energy demand balance over a long term,contributing toward reducing the investment cost of both generators and battery storage and thus the total energy cost.This advantage can be further improved when the hydrogen demand rises.However,a cost reduction by 20%is required for hydrogen-related technologies to initiate hydrogen storage as long-term energy storage for power systems.This study provides a suggestion and reference for the advancement and planning of hydrogen storage development in regions with rich sources of renewable energy.展开更多
基金supported by the Global Energy Interconnection Group Co.,Ltd.Science and Technology Project(Project No.101662224/Title:UHV large-capacity DC submarine cable key technology and roadmap research)the National Key R&D Program of China(2016YFB0900702)
文摘Power transmission across the sea is an important part of global energy interconnection(GEI).To support the construction of GEI and to serve the needs of future clean energy trans-sea transportation and offshore wind power development,this study a)analyzes the requirements of the GEI backbone network pertaining to direct current(DC)submarine cable technology,and b)defines the key technical and economic indices of ultrahigh-voltage direct current(UHVDC)submarine cable based on theoretical computations.The research is based on the thermoelectric coupling model and the finite element method.It is shown that the dielectric strength of the insulating materials of the±800 kV~±1100 kV/4000 MW^12000 MW UHVDC submarine cable(extrusion insulation)should be not less than 43~65 kV/mm,while the heat resistance is not less than 110°C.As the cost of submarine cable is 5~10 times higher than that of the overhead line,the project investment need to be decreased to a level within the economical carrying capacity to guarantee extensive applicability of the HVDC submarine cable technology.
基金supported in part by National Natural Science Foundation of China(Grant 51607137)in part by China Postdoctoral Science Foundation(2017T100748)in part by the Global Energy Interconnection Group’s Science&Technology Project "The development path for electricity market and key mechanisms for grid interconnection in the context of global clean energy development"(52450018000J)
文摘Environmental problems caused by traditional power production and the unbalanced distribution of energy resources and demand limit the development of sustainable societies. A feasible method to optimize the resource allocation has been proposed, and it involves cross-border and cross-regional electricity transactions. However, the uncertainty of renewable energy and the specific features of the cross-border electricity market are key issues which need to be considered in the trading mechanism design. Based on this, this paper sets up a long-term cross-border electricity trading model considering the uncertainty of renewable energy. First, annual transactions are matched according to the declared data of bidders with consideration of cross-border interconnection development benefits, potential benefit risks, and transmission costs. Second, for annual contract decomposition, the model uses the minimum generation cost function with a penalty item for power shortages to allocate electricity to each month. Additionally, the scenario reduction algorithm is combined with the unit commitment to construct a stochastic generation plan. Finally, a case study of the numerical results for the multinational electricity market in northeast Asia is used to show that the proposed trading model is feasible for cross-border electricity trading with high penetration of renewable energy.
基金supported by the State Grid Science and Technology Project (No. 52450018000H)
文摘The development of Global Energy Interconnection(GEI)is essential for supporting a wide range of basic data resources.The Global Energy Interconnection Development and Cooperation Organization has established a comprehensive data center covering six major systems.However,methods for accurately describing and scientifically evaluating the credibility of the massive amount of GEI data remain underdeveloped.To address this lack of such methods,a GEI data credibility quantitative evaluation model is proposed here.An evaluation indicator system is established to evaluate data credibility from multiple perspectives and ensure the comprehensiveness and impartiality of evaluation results.The Cloud Model abandons the hard division of comments to ensure objectivity and accuracy in evaluation results.To evaluate the suitability of the proposed method,a case analysis is conducted,wherein the proposed method demonstrates sufficient validity and feasibility.
基金supported by the State Grid Science and Technology Project (No. 5455HT160004)
文摘In order to meet the pressing demand for wide-area communication required by the Global Energy Interconnection(GEI),accelerating the construction of satellite-terrestrial Integra怕d networks that can achieve network extension and seamless global coverage has become the focus of power communication tech no logy development.In this study,we propose a satellite-terrestrial integrated network model that can support interconnection and interoperation on the IP layer between the satellite system and the怕rrestrial segment of the existing power communication system.First,the composition and function of the satellite-terrestrial collaborative network are explained.Then,the IP-based protocol stack is described,and a typical applicati on experime nt is con ducted to illustrate the particular process of this protocol stack.Fin ally,a use case of IP interconn ection that depends on GEO satellite communication is detailed.The experime ntal study has showed that the satellite-terrestrial collaborative network can efficiently support various IP applications for the GEI.
基金supported by the State Grid GEIGC Science and Technology Project(No.GEIGC-S-[2018]068,Title:Research on the impact of Global Energy Interconnection on energy transformation and energy center transfer and countermeasures program)
文摘Under the background of sustainable energy transition and environmental protection,Global Energy Interconnection(GEI),which features an innovative combination of clean energy(e.g.,solar power) and ultra-high voltage(UHV) transmission technologies,provides a means to realize global climate governance.China is a large country with unevenly distributed water resources,energy production,and energy consumption,and the large areas of desert in northern and western China have the potential for installing large-scale solar power plants.This study analyzed the potential of using large-scale solar power from deserts to coastal seawater desalination plants,which could alleviate the freshwater crisis and control desertification in China.First,the measurement data from NASA were used to estimate the potential exploitable amount of solar energy in desert areas.A macro idea was proposed for the transmission of electrical power from inland integrated energy bases to coastal seawater desalination and pumping of freshwater to western China to combat desertification and alleviate the freshwater crisis.Based on this,the electricity demands for desalination and water redistribution were estimated.As a huge interruptible load,desalination and pumping systems could be used to suppress power fluctuations of the integrated energy bases.Finally,the fundamental support roles of UHV grids in large-scale renewable energy allocation and utilization were discussed.This analysis offers a theoretical framework to help realize efficient renewable energy generation and consumption and alleviate freshwater shortage.
文摘Global Energy Interconnection(hereafter GEI) is not only connectivity of power grid, but also a series of methodical innovations for energy transition towards sustainable and resilient societies,which is different from the traditional energy development mode in the past. This paper seeks to summarize the key features about the abovementioned innovations, as Green & Clean, Balanced & Reciprocal, Efficient & Intelligent and Vitality & Business opportunity. Finally it puts forward some reflections on the future development of GEI based on ASEAN practice cases.
基金supported in part by National Key Research and Development Program of China(2016YFB0901900)in part by the Science and Technology Project of SGCC-Research on Grid Dispatching and Transaction Mode for Global Energy Interconnection+2 种基金in part by China Postdoctoral Science Foundation(2017T100748)in part by Natural Science Basis Research Plan in Shaanxi Province of China(2016JQ5015)in part by the project of State Key Laboratory of Electrical Insulation and Power Equipment in Xi’an Jiaotong University(EIPE17205,EIPE16301)
文摘In recent years, the global energy interconnection(GEI) has more and more profound influence around the world, which is a highly practical way for humans to handle the energy crisis. In the studies of GEI, the economic dispatch(ED) is a basic and important content. In this paper, a model of dynamic economic dispatch(DED) of GEI is presented, which include the renewable energy generation. The objective function of this model is composed of the operating costs and the renewable energy curtailment. A series of case studies for the transnational energy interconnection in Northeast Asia are given to verify the superiority of GEI and for further analysis.
文摘Resources scarcity,environmental pollution and climate change pose a great threat to the survival and development of humanity.The fundamental way out is innovation.Chinese President Xi Jinping proposed'discussions on establishing Global Energy Interconnection,or GEI to facilitate efforts to meet global power demand with clean and green alternatives'at the UN Sustainable Development
基金supported by National Natural Science Foundation of China(61472042)Corporation Science and Technology Program of Global Energy Interconnection Group Ltd.(GEIGC-D-[2018]024)
文摘With the rapid development of technologies such as big data and cloud computing,data communication and data computing in the form of exponential growth have led to a large amount of energy consumption in data centers.Globally,data centers will become the world’s largest users of energy consumption,with the ratio rising from 3%in 2017 to 4.5%in 2025.Due to its unique climate and energy-saving advantages,the high-latitude area in the Pan-Arctic region has gradually become a hotspot for data center site selection in recent years.In order to predict and analyze the future energy consumption and carbon emissions of global data centers,this paper presents a new method based on global data center traffic and power usage effectiveness(PUE)for energy consumption prediction.Firstly,global data center traffic growth is predicted based on the Cisco’s research.Secondly,the dynamic global average PUE and the high latitude PUE based on Romonet simulation model are obtained,and then global data center energy consumption with two different scenarios,the decentralized scenario and the centralized scenario,is analyzed quantitatively via the polynomial fitting method.The simulation results show that,in 2030,the global data center energy consumption and carbon emissions are reduced by about 301 billion kWh and 720 million tons CO2 in the centralized scenario compared with that of the decentralized scenario,which confirms that the establishment of data centers in the Pan-Arctic region in the future can effectively relief the climate change and energy problems.This study provides support for global energy consumption prediction,and guidance for the layout of future global data centers from the perspective of energy consumption.Moreover,it provides support of the feasibility of the integration of energy and information networks under the Global Energy Interconnection conception.
基金This work was supported by the Science and Technology Foundation of GEIGC(101662227)National Key Research and Development Program of China(2018 YFB0905000).
文摘In order to quantify the contribution of the mitigation strategies,an extended Kaya identity has been proposed in this paper for decomposing the various factors that influence the CO2 emission.To this end,we provided a detailed decomposition of the carbon intensity and energy intensity,which enables the quantification of clean energy development and electrification.The logarithmic mean divisia index(LMDI)has been applied to the historical data to quantify the contributions of the various factors affecting the CO2 emissions.Further,the global energy interconnection(GEI)scenario has been introduced for providing a systematic solution to meet the 2℃goal of the Paris Agreement.By combining LMDI with the scenario analysis,the mitigation potential of the various factors for CO2 emission has been analyzed.Results from the historical data indicate that economic development and population growth contribute the most to the increase in CO2 emissions,whereas improvement in the power generation efficiency predominantly helps in emission reduction.A numerical analysis,performed for obtaining the projected future carbon emissions,suggests that clean energy development and electrification are the top two factors that can decrease CO2 emissions,thus showing their great potential for mitigation in the future.Moreover,the carbon capture and storage technology serves as an important supplementary mitigation method.
基金supported in part by National Key Research and Development Program of China(2016YFB0901900)the Science and Technology Foundation of GEIDCO(SGGEIG00JYJS1900016)
文摘Decarbonization of the electricity sector is crucial to mitigate the impacts of climate change and global warming over the coming decades.The key challenges for achieving this goal are carbon emission trading and electricity sector regulation,which are also the major components of the carbon and electricity markets,respectively.In this paper,a joint electricity and carbon market model is proposed to investigate the relationships between electricity price,carbon price,and electricity generation capacity,thereby identifying pathways toward a renewable energy transition under the transactional energy interconnection framework.The proposed model is a dynamically iterative optimization model consisting of upper-level and lower-level models.The upper-level model optimizes power generation and obtains the electricity price,which drives the lower-level model to update the carbon price and electricity generation capacity.The proposed model is verified using the Northeast Asia power grid.The results show that increasing carbon price will result in increased electricity price,along with further increases in renewable energy generation capacity in the following period.This increase in renewable energy generation will reduce reliance on carbon-emitting energy sources,and hence the carbon price will decline.Moreover,the interconnection among zones in the Northeast Asia power grid will enable reasonable allocation of zonal power generation.Carbon capture and storage (CCS) will be an effective technology to reduce the carbon emissions and further realize the emission reduction targets in 2030-2050.It eases the stress of realizing the energy transition because of the less urgency to install additional renewable energy capacity.
基金supported by the GEIGC Science and Technology Project in the framework of“Research on Comprehensive Path Evaluation Methods and Practical Models for the Synergetic Development of Global Energy,Atmospheric Environment and Human Health”(grant No.20210302007).
文摘Climate change and air pollution are primarily caused by the combustion and utilization of fossil fuels.Both climate change and air pollution cause health problems.Based on the development of China,it is extremely important to explore the synergies of the energy transition,CO_(2) reduction,air pollution control,and health improvement under the target of carbon peaking before 2030 and carbon neutrality before 2060.This study introduces the policy evolution and research progress related to energy,climate change,and the environment in China and proposes a complete energy-climate-air-health mechanism framework.Based on the MESSAGE-GLOBIOM integrated assessment model,emission inventory and chemical transport model,and exposure-response function,a comprehensive assessment method of energy-climate-air-health synergies was established and applied to quantify the impacts of Chinese Energy Interconnection Carbon Neutrality(CEICN)scenario.The results demonstrate that,by 2060,the SO_(2),NO_(x) and PM_(2.5) emissions are estimated to be reduced by 91%,85%,and 90%respectively compared to the business-as-usual(BAU)scenario.The direct health impacts brought by achieving the goal of carbon neutrality will drive the proactive implementation of more emission reduction measures and bring greater benefits to human health.
基金supported by the National Science Foundation of China(Grant No.41701232).
文摘Climate change is becoming an important issue in all fields of infrastructure development.Electricity plays a core role in the decarbonized energy system’s path to a regional zero-emission pattern.A well-built trans-Mediterranean backbone grid can hedge the profound evolution of regional power generation,transmission,and consumption.To date,only Turkey and the Maghreb countries(i.e.,Morocco,Algeria,and Tunisia)are connected with the Continental European Synchronous Area.Other south-and east-shore countries have insufficient interconnection infrastructures and synchronization difficulties that have proven to be major hurdles to the implementation of large-scale solar and wind projects and achievement of climate goals.This study analyzes the current trans-boundary grid interconnections and power and carbon emission portfolios in the Mediterranean region.To align with the recently launched new climate target‘Fit for 55’program and the accelerated large-scale renewables target,a holistic review of projected trans-Mediterranean grids and their market,technical,and financial obstacles of implementation was conducted.For south-and east-shore countries,major legal and regulatory barriers encompassing non-liberalized market structure,regulation gaps of taxation and transmission tariffs,and the private sector’s access rights need to be removed.Enhancement of domestic grids,substations,and harmonized grid codes and frequency,voltage,and communication technology standards among all trans-Mediterranean countries are physical prerequisites for implementing the Trans-Mediterranean Electricity Market.In addition,the mobilization of capital instruments along with private and international investments is indispensable for the realization of supranational transmission projects.As the final section of the decarbonization roadmap,the development of electric appliances,equipment,and vehicles with higher efficiency is inevitable in the decarbonized building,transportation,and industry sectors.
文摘Since the establishment of diplomatic relations between China and Brazil,building clean energy system and exploring a green development path have always been an important part of bilateral relations.The Itaipu Hydroelectric Dam jointly built by Brazil and Paraguay had provided valuable experience for the design and construction of the Three Gorges Dam.Brazilian companies participated in the building of many hydropower stations in China in the 1990s.As Chinese energy enterprises are accelerating their pace of going global,China’s investment in Brazil’s power sector has gradually increased since 2010,and various advanced Chinese technologies have been introduced to Brazil.Although China and Brazil are thousands of miles apart,they have gained greater room for cooperation in the context of a technology-driven energy revolution,benefiting the people of both countries while making positive contributions to global climate governance.
文摘Energy cooperation is a key area in the joint construction of the Belt and Road Initiative.To deepen international energy cooperation,it is advisable to place greater emphasis on whole life cycle and systematic planning in project collaboration,government-led initiatives with businesses playing a central role,alongside coordination with non-governmental international institutions,and comprehensive integration of resources.
基金supported by Science and Technology Foundation of Global Energy Interconnection Group Co.Ltd(52450018000L)。
文摘Cross-border grid interconnection is a critical means to achieve wide-area share of hydro and other clean energy.Economic benefit assessment of cross-border grid interconnection projects should be carefully performed during early stage.In this paper,a method based on cost-benefit economic assessment for optimal planning of cross-border grid interconnection is proposed.An economic index for comprehensively assessing the cost of a transmission project and its resulting benefits of more usage of hydro energy is designed first.A chronological production cost simulation model considering hydro energy spillage due to transmission congestion and thermal operational limitation is then proposed to calculate the economic index.A case study is performed using the proposed method to determine the optimal capacity of a potential transmission link between Brazil and Argentina,which have rich and complementary hydro energy resources.
基金supported by the Overseas Expertise Introduction Project for Discipline Innovation(B18014)National Natural Science Foundation of China(71733002)Science and Technology Foundation of SGCC(52450018000N)。
文摘There has been an intense discussion on the energy infrastructure cooperation in Northeast Asia.Most studies have focused on the technical feasibility of grid interconnection,deployment of renewable energy,and have ignored the quantitative analysis of social and economic benefits of these proposals.This study uses a computable general equilibrium model to evaluate the effects of energy interconnection in Northeast Asia.Key model development tasks include 1)constructing a new nesting structure,2)econometrically estimating the constant elasticities of substitution(CES)between fossil-and non-fossil-power generation bundles,3)developing a new base-case scenario,and 4)developing the policy scenario.We found that while Northeast Asia will benefit from energy interconnection development with higher GDP than in the base-case;there will be a trade-off between higher investment and lower consumption.Sector results and environmental implications in this region are also discussed.
基金jointly supported by Youth Program of National Natural Science Foundation of China(No.51907100)Technical Program of Global Energy Interconnection Group Co.,Ltd(No.1100/2020-75001B)
文摘Electric system planning with high variable renewable energy(VRE)penetration levels has attracted great attention world-wide.Electricity production of VRE highly depends on the weather conditions and thus involves large variability,uncertainty,and low-capacity credit.This gives rise to significant challenges for power system planning.Currently,many solutions are proposed to address the issue of operational flexibility inadequacy,including flexibility retrofit of thermal units,inter-regional transmission,electricity energy storage,and demand response(DR).Evidently,the performance and the cost of various solutions are different.It is relevant to explore the optimal portfolio to satisfy the flexibility requirement for a renewable dominated system and the role of each flexibility source.In this study,the value of diverse DR flexibilities was examined and a stochastic investment planning model considering DR is proposed.Two types of DRs,namely interrupted DR and transferred DR,were modeled.Chronological load and renewable generation curves with 8760 hours within a whole year were reduced to 4 weekly scenarios to accelerate the optimization.Clustered unit commitment constraints for accommodating variability of renewables were incorporated.Case studies based on IEEE RTS-96 system are reported to demonstrate the effectiveness of the proposed method and the DR potential to avoid energy storage investment.
基金funded by the technical project of Global Energy Internet Group Co.,Ltd.:Research on Global Energy Internet Big Data Collection and Analysis Modeling and the National Key Research and Development Plan of China under Grant(2018YFB0905000)
文摘In recent years,renewable energy technologies have been developed vigorously,and related supporting policies have been issued.The developmental trend of different energy sources directly affects the future developmental pattern of the energy and power industry.Energy trend research can be quantified through data statistics and model calculations;however,parameter settings and optimization are difficult,and the analysis results sometimes do not reflect objective reality.This paper proposes an energy and power information analysis method based on emotion mining.This method collects energy commentary news and literature reports from many authoritative media around the world and builds a convolutional neural network model and a text analysis model for topic classification and positive/negative emotion evaluation,which helps obtain text evaluation matrixes for all collected texts.Finally,a long-short-term memory model algorithm is employed to predict the future development prospects and market trends for various types of energy based on the analyzed emotions in different time spans.Experimental results indicate that energy trend analysis based on this method is consistent with the real scenario,has good applicability,and can provide a useful reference for the development of energy and power resources and of other industry areas as well.
基金National Natural Science Foundation of China(program number 51707108)Global Energy Interconnection Group Co.,Ltd.Science and Technology Project(2700/2020-75001B).
文摘To achieve carbon neutrality by 2060,decarbonization in the energy sector is crucial.Hydrogen is expected to be vital for achieving the aim of carbon neutrality for two reasons:use of power-to-hydrogen(P2H)can avoid carbon emissions from hydrogen production,which is traditionally performed using fossil fuels;Hydrogen from P2H can be stored for long durations in large scales and then delivered as industrial raw material or fed back to the power system depending on the demand.In this study,we focus on the analysis and evaluation of hydrogen value in terms of improvement in the flexibility of the energy system,particularly that derived from hydrogen storage.An electricity-hydrogen coupled energy model is proposed to realize the hourly-level operation simulation and capacity planning optimization aiming at the lowest cost of energy.Based on this model and considering Northwest China as the region of study,the potential of improvement in the flexibility of hydrogen storage is determined through optimization calculations in a series of study cases with various hydrogen demand levels.The results of the quantitative calculations prove that effective hydrogen storage can improve the system flexibility by promoting the energy demand balance over a long term,contributing toward reducing the investment cost of both generators and battery storage and thus the total energy cost.This advantage can be further improved when the hydrogen demand rises.However,a cost reduction by 20%is required for hydrogen-related technologies to initiate hydrogen storage as long-term energy storage for power systems.This study provides a suggestion and reference for the advancement and planning of hydrogen storage development in regions with rich sources of renewable energy.