Online diagnosis methods for high-voltage(HV)cable faults have been extensively studied.Power cable fault monitoring is not accurate,and the degree of data fusion analysis of current methods is insufficient.To address...Online diagnosis methods for high-voltage(HV)cable faults have been extensively studied.Power cable fault monitoring is not accurate,and the degree of data fusion analysis of current methods is insufficient.To address these problems,an online monitoring method based on the locus-analysis for HV cable faults is developed.By simultaneously measuring two circulating currents in a coaxial cable,a two-dimensional locus diagram is drawn.The fault criteria and database are established to detect the fault by analyzing the changes of the locus characteristic parameters.A cross-connected grounding simulation model of a high-voltage cable is developed,and several faults at different locations are simulated.Fault identification is established based on the changes in the long axis,short axis,eccentricity,and tilt angle of the track.The simulation and field experiments show that this method can provide an increased amount of fault-monitoring reference information,which can improve the monitoring accuracy and provide a new approach to cable fault monitoring.展开更多
文摘Online diagnosis methods for high-voltage(HV)cable faults have been extensively studied.Power cable fault monitoring is not accurate,and the degree of data fusion analysis of current methods is insufficient.To address these problems,an online monitoring method based on the locus-analysis for HV cable faults is developed.By simultaneously measuring two circulating currents in a coaxial cable,a two-dimensional locus diagram is drawn.The fault criteria and database are established to detect the fault by analyzing the changes of the locus characteristic parameters.A cross-connected grounding simulation model of a high-voltage cable is developed,and several faults at different locations are simulated.Fault identification is established based on the changes in the long axis,short axis,eccentricity,and tilt angle of the track.The simulation and field experiments show that this method can provide an increased amount of fault-monitoring reference information,which can improve the monitoring accuracy and provide a new approach to cable fault monitoring.