The calcium-doped ZnO nanoparticles,Zn1-xCaxO(x=0,0.025,0.05,0.075)were prepared by the solution combustion method.The synthesized nanoparticles were characterized by various techniques such as XRD,FTIR,Raman,FE...The calcium-doped ZnO nanoparticles,Zn1-xCaxO(x=0,0.025,0.05,0.075)were prepared by the solution combustion method.The synthesized nanoparticles were characterized by various techniques such as XRD,FTIR,Raman,FESEM-EDX,PL,Impedance,and UV-Vis.The Rietveld refinement of the X-ray diffractogram yields the crystalline structure and lattice parameters.Also,the XRD analysis shows that the substitution of Ca into ZnO does not alter the Wurtzite structure of ZnO.The crystallite size of the samples,calculated using the Scherer equation,was found to be between 46 nm and 92 nm.FTIR spectra detect the ZnO-related vibration modes of the samples.The FESEM morphological images suggest the spherical shape of the synthesized nanoparticles.The EDAX spectra identify the presence of Zn,Ca,and O atoms in the samples.The Raman active modes of the ZnO phase were identified by Raman spectral analysis.The analysis of Photoluminescence(PL)spectra gives information about the UV emission and other visible bands corresponding to violet,blue,and green emission representing different intrinsic defects in synthesized nanoparticles.Using UV-vis spectroscopy,the optical transparency and band gap values were examined.The energy band gap obtained by Tauc’s plot was decreased with the increase in Ca doping.Impedance analysis shows that the grain conductivity increased with the increase in dopant concentration.Contrarily,the total conductivity decreased with the increasing doping concentration due to increased grain boundary resistance.The proposed work demonstrates the changes in microstructure,electrical conductivity,and optical bandgap energy with Ca-doping.These synthesized Ca-doped ZnO nanoparticles could be promising materials for photocatalytic applications.展开更多
Metal matrix composites (MMCs) are gaining widespread recognition in numerous technological fields owing to its superior mechanical properties when compared with conventional metals/alloys. The aluminium based hybrid ...Metal matrix composites (MMCs) are gaining widespread recognition in numerous technological fields owing to its superior mechanical properties when compared with conventional metals/alloys. The aluminium based hybrid composites are increasingly being used in the transport, aerospace, marine, automobile and mineral processing industries, owing to the improved strength, stiffness and wear resistance properties. In the present research work, the composites were prepared using the liquid metallurgy technique, in which 2 - 10 weight percentage of Al2O3 particulates and 1 weight percentage of Graphite were dispersed in the base Al6061 alloy. The Casted hybrid composites were subjected to machining process to prepare the specimens according to ASTM standards. Then, the prepared specimens are subjected for assessing the Microstructure followed by its Mechanical behaviors such as, Hardness, Tensile strength, Compressive strength respectively. The microstructure analysis confirms that homogenous distribution of Al2O3 and Gr in the Al6061 matrix alloy and there was a momentous enhancement in decisive tensile strength, compressive strength and hardness properties of the hybrid composite. However, a substantial increase in the compressive strength was noticed in graphite reinforced composites as the graphite content was increased and there was a significant diminution in hardness coupled with monotonic increases in the ductility. Further, the ultimate tensile strength and compressive strength of the composite was noticed;thus the outcome of the study will provide explicit rationalizations for these observable facts. Therefore, the proposed way out in the study can provide ample of approaches to minimize the existing problem by employing this newer hybrid composites.展开更多
文摘The calcium-doped ZnO nanoparticles,Zn1-xCaxO(x=0,0.025,0.05,0.075)were prepared by the solution combustion method.The synthesized nanoparticles were characterized by various techniques such as XRD,FTIR,Raman,FESEM-EDX,PL,Impedance,and UV-Vis.The Rietveld refinement of the X-ray diffractogram yields the crystalline structure and lattice parameters.Also,the XRD analysis shows that the substitution of Ca into ZnO does not alter the Wurtzite structure of ZnO.The crystallite size of the samples,calculated using the Scherer equation,was found to be between 46 nm and 92 nm.FTIR spectra detect the ZnO-related vibration modes of the samples.The FESEM morphological images suggest the spherical shape of the synthesized nanoparticles.The EDAX spectra identify the presence of Zn,Ca,and O atoms in the samples.The Raman active modes of the ZnO phase were identified by Raman spectral analysis.The analysis of Photoluminescence(PL)spectra gives information about the UV emission and other visible bands corresponding to violet,blue,and green emission representing different intrinsic defects in synthesized nanoparticles.Using UV-vis spectroscopy,the optical transparency and band gap values were examined.The energy band gap obtained by Tauc’s plot was decreased with the increase in Ca doping.Impedance analysis shows that the grain conductivity increased with the increase in dopant concentration.Contrarily,the total conductivity decreased with the increasing doping concentration due to increased grain boundary resistance.The proposed work demonstrates the changes in microstructure,electrical conductivity,and optical bandgap energy with Ca-doping.These synthesized Ca-doped ZnO nanoparticles could be promising materials for photocatalytic applications.
文摘Metal matrix composites (MMCs) are gaining widespread recognition in numerous technological fields owing to its superior mechanical properties when compared with conventional metals/alloys. The aluminium based hybrid composites are increasingly being used in the transport, aerospace, marine, automobile and mineral processing industries, owing to the improved strength, stiffness and wear resistance properties. In the present research work, the composites were prepared using the liquid metallurgy technique, in which 2 - 10 weight percentage of Al2O3 particulates and 1 weight percentage of Graphite were dispersed in the base Al6061 alloy. The Casted hybrid composites were subjected to machining process to prepare the specimens according to ASTM standards. Then, the prepared specimens are subjected for assessing the Microstructure followed by its Mechanical behaviors such as, Hardness, Tensile strength, Compressive strength respectively. The microstructure analysis confirms that homogenous distribution of Al2O3 and Gr in the Al6061 matrix alloy and there was a momentous enhancement in decisive tensile strength, compressive strength and hardness properties of the hybrid composite. However, a substantial increase in the compressive strength was noticed in graphite reinforced composites as the graphite content was increased and there was a significant diminution in hardness coupled with monotonic increases in the ductility. Further, the ultimate tensile strength and compressive strength of the composite was noticed;thus the outcome of the study will provide explicit rationalizations for these observable facts. Therefore, the proposed way out in the study can provide ample of approaches to minimize the existing problem by employing this newer hybrid composites.