This paper presents an analysis of the impact of wind on the transport of the Changiiang River Diluted Water (CRDW) in August by using the salinity data col- lected on two zonal sections near Cheju-do. Based on the ...This paper presents an analysis of the impact of wind on the transport of the Changiiang River Diluted Water (CRDW) in August by using the salinity data col- lected on two zonal sections near Cheju-do. Based on the climatological mean conditions and four extreme events, the analysis indicates that wind-induced Ekman transport plays an important role in the extension of the CRDW. The strong northeastward Ekman transport induced by southeasterly wind in 1996, 2003, 2004, and 2006 pushes the core of the CRDW to the sea adjacent to Cheju-do. A comparison of the wind variation before observation among these four extreme events indicates that the expan- sion pattern of the CRDW is primarily changed by synop- tic variation with tirnescales of days to weeks, such as during a typhoon. The weak eastward extension of the CRDW in 2004, accompanied with a relatively strong southerly wind, implies that the oceanographic state (e.g., the depth of halocline) may strongly affect the impact of wind on the extension of the CRDW.展开更多
Penicillin is historically important as the first discovered drug against bacterial infections in human. Although the penicillin biosyn- thetic pathway and regulatory mechanism have been well studied in Penicillium ch...Penicillin is historically important as the first discovered drug against bacterial infections in human. Although the penicillin biosyn- thetic pathway and regulatory mechanism have been well studied in Penicillium chrysogenum, the compartmentation and molecular transport of penicillin or its precursors are still poorly understood. In search of the genomic database, more than 830 open reading frames (ORFs) were found to encode transmembrane proteins of P. chrysogenum. In order to investigate their roles on penicillin production, one of them (penT) was selected and cloned. The deduced protein ofpenTbelongs to the major facilitator superfamily (MFS) and contains 12 transmembrane spanning domains (TMS). During fermentation, the transcription of penT was greatly induced by penicillin precursors phenylacetic acid (PAA) and phenoxyacetic acid (POA). Knock-down of penT resulted in significant decrease of penicillin production, while over-expression of penT under the promoter of trpC enhanced the penicillin production. Introduction of an additional penT in the wild-type strain of P. chrysogenurn doubled the penicillin production and enhanced the sensitivity of P. chrysogenum to the penicillin precursors PAA or POA. These results indicate that penT stimulates penicillin production probably through enhancing the translocation of penicillin precursors across fungal cellular membrane. Penicillin is historically important as the first discovered drug against bacterial infections in human. Although the penicillin biosyn- thetic pathway and regulatory mechanism have been well studied in Penicillium chrysogenum, the compartmentation and molecular transport of penicillin or its precursors are still poorly understood. In search of the genomic database, more than 830 open reading frames (ORFs) were found to encode transmembrane proteins of P. chrysogenum. In order to investigate their roles on penicillin production, one of them (penT) was selected and cloned. The deduced protein ofpenTbelongs to the major facilitator superfamily (MFS) and contains 12 transmembrane spanning domains (TMS). During fermentation, the transcription of penT was greatly induced by penicillin precursors phenylacetic acid (PAA) and phenoxyacetic acid (POA). Knock-down of penT resulted in significant decrease of penicillin production, while over-expression of penT under the promoter of trpC enhanced the penicillin production. Introduction of an additional penT in the wild-type strain of P. chrysogenurn doubled the penicillin production and enhanced the sensitivity of P. chrysogenum to the penicillin precursors PAA or POA. These results indicate that penT stimulates penicillin production probably through enhancing the translocation of penicillin precursors across fungal cellular membrane.展开更多
基金supported by the National Natural Science Foundation of China (40906014 and 40976015)the Marine Science Foundation of State Oceanic Administration of China for the Youth (2010218)
文摘This paper presents an analysis of the impact of wind on the transport of the Changiiang River Diluted Water (CRDW) in August by using the salinity data col- lected on two zonal sections near Cheju-do. Based on the climatological mean conditions and four extreme events, the analysis indicates that wind-induced Ekman transport plays an important role in the extension of the CRDW. The strong northeastward Ekman transport induced by southeasterly wind in 1996, 2003, 2004, and 2006 pushes the core of the CRDW to the sea adjacent to Cheju-do. A comparison of the wind variation before observation among these four extreme events indicates that the expan- sion pattern of the CRDW is primarily changed by synop- tic variation with tirnescales of days to weeks, such as during a typhoon. The weak eastward extension of the CRDW in 2004, accompanied with a relatively strong southerly wind, implies that the oceanographic state (e.g., the depth of halocline) may strongly affect the impact of wind on the extension of the CRDW.
基金supported by the grants from the Ministry of Science and Technology of China(Nos.2009CB118905 and 2010ZX09401-403)the Knowledge Innovation Program of the Chinese Academy of Sciences(Nos.KSCX2-EW-G-6 and KSCX2-EW-J-6)
文摘Penicillin is historically important as the first discovered drug against bacterial infections in human. Although the penicillin biosyn- thetic pathway and regulatory mechanism have been well studied in Penicillium chrysogenum, the compartmentation and molecular transport of penicillin or its precursors are still poorly understood. In search of the genomic database, more than 830 open reading frames (ORFs) were found to encode transmembrane proteins of P. chrysogenum. In order to investigate their roles on penicillin production, one of them (penT) was selected and cloned. The deduced protein ofpenTbelongs to the major facilitator superfamily (MFS) and contains 12 transmembrane spanning domains (TMS). During fermentation, the transcription of penT was greatly induced by penicillin precursors phenylacetic acid (PAA) and phenoxyacetic acid (POA). Knock-down of penT resulted in significant decrease of penicillin production, while over-expression of penT under the promoter of trpC enhanced the penicillin production. Introduction of an additional penT in the wild-type strain of P. chrysogenurn doubled the penicillin production and enhanced the sensitivity of P. chrysogenum to the penicillin precursors PAA or POA. These results indicate that penT stimulates penicillin production probably through enhancing the translocation of penicillin precursors across fungal cellular membrane. Penicillin is historically important as the first discovered drug against bacterial infections in human. Although the penicillin biosyn- thetic pathway and regulatory mechanism have been well studied in Penicillium chrysogenum, the compartmentation and molecular transport of penicillin or its precursors are still poorly understood. In search of the genomic database, more than 830 open reading frames (ORFs) were found to encode transmembrane proteins of P. chrysogenum. In order to investigate their roles on penicillin production, one of them (penT) was selected and cloned. The deduced protein ofpenTbelongs to the major facilitator superfamily (MFS) and contains 12 transmembrane spanning domains (TMS). During fermentation, the transcription of penT was greatly induced by penicillin precursors phenylacetic acid (PAA) and phenoxyacetic acid (POA). Knock-down of penT resulted in significant decrease of penicillin production, while over-expression of penT under the promoter of trpC enhanced the penicillin production. Introduction of an additional penT in the wild-type strain of P. chrysogenurn doubled the penicillin production and enhanced the sensitivity of P. chrysogenum to the penicillin precursors PAA or POA. These results indicate that penT stimulates penicillin production probably through enhancing the translocation of penicillin precursors across fungal cellular membrane.