In three-dimensional computed tomography angiography (3D-CTA) in our facility, we usually scan the volume of the brain according to the bolus tracking method. Fluoroscopic slice is placed at the Willis’s ring and the...In three-dimensional computed tomography angiography (3D-CTA) in our facility, we usually scan the volume of the brain according to the bolus tracking method. Fluoroscopic slice is placed at the Willis’s ring and the timing of scan is determined subjectively by a radiological technologist after strong enhancement of the basal cerebral artery is confirmed. In these procedures, however, variation of scan timing is often problematic. Therefore, we design the surpassing method to place the small region-of-interest (ROI) at the basal cerebral arteries and to start CT scan automatically. In this protocol, the fluoroscopic slices of the distal internal carotid arteries are selected referring to the precontrast volume data, small ROIs are set in bilateral internal carotid arteries, and scan trigger of CT is started automatically at the threshold of 170 HU. The maximum 80 mL of iodine contrast agent 300 mgI/mL is injected intravenously at the rate of 4.0 mL/sec, and the volume of the arterial phase is scanned automatically. We measure ROIs at the internal carotid arteries based on the obtained volume data of arterial phase and estimate the optimal scan timings from the fluoroscopic CT images reformatted at the intervals of 0.1 sec. In 38 of 53 patients, placement of the small ROIs is succeeded and automatic or manual CT scan is performed. In the patients who succeed in placement of the small ROIs, optimal scan timing of the arterial phase is obtained, while in the patients who fail placement of the small ROIs, a large variation is observed in their scan timings. Their results suggest that more stable scanning of the arterial phase is available by means of small ROI placement and automatic scanning. The clinical significance is large because the stability and reproducibility of the examination provide a quantitative analysis and more accurate diagnosis.展开更多
文摘In three-dimensional computed tomography angiography (3D-CTA) in our facility, we usually scan the volume of the brain according to the bolus tracking method. Fluoroscopic slice is placed at the Willis’s ring and the timing of scan is determined subjectively by a radiological technologist after strong enhancement of the basal cerebral artery is confirmed. In these procedures, however, variation of scan timing is often problematic. Therefore, we design the surpassing method to place the small region-of-interest (ROI) at the basal cerebral arteries and to start CT scan automatically. In this protocol, the fluoroscopic slices of the distal internal carotid arteries are selected referring to the precontrast volume data, small ROIs are set in bilateral internal carotid arteries, and scan trigger of CT is started automatically at the threshold of 170 HU. The maximum 80 mL of iodine contrast agent 300 mgI/mL is injected intravenously at the rate of 4.0 mL/sec, and the volume of the arterial phase is scanned automatically. We measure ROIs at the internal carotid arteries based on the obtained volume data of arterial phase and estimate the optimal scan timings from the fluoroscopic CT images reformatted at the intervals of 0.1 sec. In 38 of 53 patients, placement of the small ROIs is succeeded and automatic or manual CT scan is performed. In the patients who succeed in placement of the small ROIs, optimal scan timing of the arterial phase is obtained, while in the patients who fail placement of the small ROIs, a large variation is observed in their scan timings. Their results suggest that more stable scanning of the arterial phase is available by means of small ROI placement and automatic scanning. The clinical significance is large because the stability and reproducibility of the examination provide a quantitative analysis and more accurate diagnosis.