The interaction between shock waves and multiple cylinders,referred to as shock–cylinder interaction(SCI),is an important phenomenon in science and engineering.However,its underlying physical mechanisms remain unclea...The interaction between shock waves and multiple cylinders,referred to as shock–cylinder interaction(SCI),is an important phenomenon in science and engineering.However,its underlying physical mechanisms remain unclear.This study entailed the numerical simulation of the aerobreakup of two tandem water columns subjected to a high-speed gas flow by using an adaptive mesh refinement(AMR)-based diffusion-interface model.The objective was to elucidate the changes in water–column deformation patterns over a wide range of Weber numbers.Statistical analysis was performed to examine the deformation of the water columns in vertical directions.Results reveal distinct deformation patterns between the two columns as the Weber number increases.Additionally,an extended exponential stretching law model was devised,and its improved capability to predict the deformation patterns was demonstrated.展开更多
Space objects such as spacecraft or missiles may be exposed to intense X-rays in outer space,leading to severe damage.The reinforcement of these objects to reduce the damage caused by X-ray irradiation is a significan...Space objects such as spacecraft or missiles may be exposed to intense X-rays in outer space,leading to severe damage.The reinforcement of these objects to reduce the damage caused by X-ray irradiation is a significant concern.The blow-off impulse(BOI)is a crucial physical quantity for investigating material damage induced by X-ray irradiation.However,the accurate calculation of BOI is challenging,particularly for large deformations of materials with complex configurations.In this study,we develop a novel two-dimensional particle-in-cell code,Xablation2D,to calculate BOIs under far-field X-ray irradiation.This significantly reduces the dependence of the numerical simulation on the grid shape.The reliability of this code is verified by simulation results from open-source codes,and the calculated BOIs are consistent with the experimental and analytical results.展开更多
We study superradiant phase transitions in a hybrid system of a two-dimensional Bose–Einstein condensate of atoms and two cavities arranged with a tilt angle.By adjusting the loss rate of cavities,we map out the phas...We study superradiant phase transitions in a hybrid system of a two-dimensional Bose–Einstein condensate of atoms and two cavities arranged with a tilt angle.By adjusting the loss rate of cavities,we map out the phase diagram of steady states within a mean field framework.It is found that when the loss rates of the two cavities are different,superradiant transitions may not occur at the same time in the two cavities.A first-order phase transition is observed between the states with only one cavity in superradiance and both in superradiance.In the case that both cavities are superradiant,a net photon current is observed flowing from the cavity with small decay rate to the one with large decay rate.The photon current shows a non-monotonic dependence on the loss rate difference,owing to the competition of photon number difference and cavity field phase difference.Our findings can be realized and detected in experiments.展开更多
Isolated attosecond pulses with a duration of 88 as are generated in the spectral range of 29–72 eV using double optical gating technique.The gate width is set to be shorter than half the optical cycle to avoid carri...Isolated attosecond pulses with a duration of 88 as are generated in the spectral range of 29–72 eV using double optical gating technique.The gate width is set to be shorter than half the optical cycle to avoid carrier envelop phase stabilization of the 4.2 fs driving laser pulses centered at 800 nm.The attosecond pulse duration is measured with the technique of frequency resolved optical gating for complete reconstruction of attosecond bursts.展开更多
In this paper, we prove the existence and uniqueness of the weak solution to the incompressible Navier-Stokes-Landau-Lifshitz equations in two-dimension with finite energy.The main techniques is the Faedo-Galerkin app...In this paper, we prove the existence and uniqueness of the weak solution to the incompressible Navier-Stokes-Landau-Lifshitz equations in two-dimension with finite energy.The main techniques is the Faedo-Galerkin approximation and weak compactness theory.展开更多
In most collisional schemes of x-ray laser (XRL) experiments, a bow-like intensity distribution of XRL is often observed, and it is generally ascribed to the two-dimensional hydrodynamic behaviour of expanding plasm...In most collisional schemes of x-ray laser (XRL) experiments, a bow-like intensity distribution of XRL is often observed, and it is generally ascribed to the two-dimensional hydrodynamic behaviour of expanding plasma. In order to better understand its essence in physics, a newly developed two-dimensional non-equilibrium radiation hydrodynamic code XRL2D is used to simulate a quasi-steady state Ni-like Ag XRL experiment on ShenGuang-Ⅱfacility. The simulation results show that the bow-like distribution of Ni-like ions caused by over-ionization in the central area of plasma is responsible for the bow-like shape of the XRL intensity distribution observed.展开更多
The elaborate energy and momentum spectra of ionized electrons from atoms in laser fields suggest that the ionization dynamics described by tunneling theory should be modified. Although great efforts have been carried...The elaborate energy and momentum spectra of ionized electrons from atoms in laser fields suggest that the ionization dynamics described by tunneling theory should be modified. Although great efforts have been carried out within semiclassical models, there are few discussions describing the multiphoton absorption process within a quantum framework. Comparing the results obtained with the time-dependent Schr?dinger equation(TDSE)and the Keldysh–Faisal–Reiss(KFR) theory, we study the nonperturbative effects of ionization dynamics beyond the KFR theory. The difference in momentum spectra between multiphoton and tunneling regimes is understood in a unified picture with virtual multiphoton absorption processes. For the multiphoton regime, the momentum spectra can be obtained by coherent interference of each periodic contribution. However, the interference of multiphoton absorption peaks will result in a complex structure of virtual multiphoton bands in the tunneling regime. It is shown that the virtual spectra will be almost continuous in the tunneling regime instead of the discrete levels found in the multiphoton regime. Finally, with a model combining the TDSE and the KFR theory,we try to understand the different effects of virtual multiphoton processes on ionization dynamics.展开更多
Laser-induced damage often determines the effective lifetime of an optic in large high-energy laser facilities. We present the damage performance on the rear surface of a large-aperture KDP crystal for 351 nm, 5ns las...Laser-induced damage often determines the effective lifetime of an optic in large high-energy laser facilities. We present the damage performance on the rear surface of a large-aperture KDP crystal for 351 nm, 5ns laser pulses. Surface damage shows a lower threshold than bulk damage after conditioning. Craters initiated on the scratch are found to increase with the shot number before filling the scratch. The experimental results reveal that damage initiation is mainly caused by extrinsic nanoabsorbers buried in the surface during the large-aperture laser operation.展开更多
The high-order harmonic generation from a model solid structure driven by an intense laser pulse is investigated using the semiconductor Bloch equations(SBEs). The main features of harmonic spectrum from SBEs agree we...The high-order harmonic generation from a model solid structure driven by an intense laser pulse is investigated using the semiconductor Bloch equations(SBEs). The main features of harmonic spectrum from SBEs agree well with the result of the time-dependent Schro¨dinger equation(TDSE), and the cut-off energy can be precisely estimated by the recollision model. With increasing the field strength, the harmonic spectrum shows an extra plateau. Based on the temporal population of electron and the time–frequency analysis, the harmonics in the extra plateau are generated by the Bloch oscillation. Due to the ultrafast time response of the Bloch electron, the generated harmonics provide a potential source of shorter isolated attosecond pulse.展开更多
In the absorption chamber of a high-energy laser energy meter, water is directly used as an absorbing medium and the interaction of the high-power laser and the water flow can produce a variety of physical phenomena s...In the absorption chamber of a high-energy laser energy meter, water is directly used as an absorbing medium and the interaction of the high-power laser and the water flow can produce a variety of physical phenomena such as phase transitions. The unit difference method is adopted to deduce the phase transition model for water flow irradiated by a high-energy laser. In addition, the model is simulated and verified through experiments. Among them, the experimental verification uses the photographic method, shooting the distribution and the form of the air mass of water flow in different operating conditions, which are compared with the simulation results. The research shows that it is achievable to reduce the intensity of the phase transition by increasing the water flow, reducing the power intensity of the beam, shortening the distance the beam covers, reducing the initial water temperature or adopting a shorter wavelength laser. The study's results will provide the reference for the design of a water-direct-absorption-type high-energy laser energy meter as well as an analysis of the interaction processes of other similar high-power lasers and water flow.展开更多
The author considers the global existence and global nonexistence of the initial-boundary value problem for some degenerate hyperbolic equation of the form utt- div(|△↓|^P-2 △↓u)=|u|^m u, (x,t)∈[0, +∞)...The author considers the global existence and global nonexistence of the initial-boundary value problem for some degenerate hyperbolic equation of the form utt- div(|△↓|^P-2 △↓u)=|u|^m u, (x,t)∈[0, +∞) ×Ω with p 〉 2 and m 〉 0. He deals with the global solutions by D.H.Sattinger's potential well ideas. At the same time, when the initial energy is positive, but appropriately bounded, the global nonexistence of solutions is verified by using the analysis method.展开更多
The Helmholtz SchrSdinger method is employed to study the electric field standing wave caused by coupling through a simple slot. There is a good agreement between the numerical results and the resonant conditions pres...The Helmholtz SchrSdinger method is employed to study the electric field standing wave caused by coupling through a simple slot. There is a good agreement between the numerical results and the resonant conditions presented by the Helmholtz-Schrodinger method. Thus, it can be used in similar cases where the amplitude of the electric field is the important quantity or eigenfunctions of the Schrodinger equation are needed for complicated quantum structures with hard wall boundary conditions.展开更多
Minimizing the effect of noise is essential for quantum computers.The conventional method to protect qubits against noise is through quantum error correction.However,for current quantum hardware in the so-called noisy...Minimizing the effect of noise is essential for quantum computers.The conventional method to protect qubits against noise is through quantum error correction.However,for current quantum hardware in the so-called noisy intermediate-scale quantum(NISQ)era,noise presents in these systems and is too high for error correction to be beneficial.Quantum error mitigation is a set of alternative methods for minimizing errors,including error extrapolation,probabilistic error cancella-tion,measurement error mitigation,subspace expansion,symmetry verification,virtual distillation,etc.The requirement for these methods is usually less demanding than error correction.Quantum error mitigation is a promising way of reduc-ing errors on NISQ quantum computers.This paper gives a comprehensive introduction to quantum error mitigation.The state-of-art error mitigation methods are covered and formulated in a general form,which provides a basis for comparing,combining and optimizing different methods in future work.展开更多
In this paper, we investigate the breakup of spiral wave under no-flux, periodic and Dirichlet boundary conditions respectively. When the parameter ε is close to a critical value for Doppler-induced wave breakup, the...In this paper, we investigate the breakup of spiral wave under no-flux, periodic and Dirichlet boundary conditions respectively. When the parameter ε is close to a critical value for Doppler-induced wave breakup, the instability of the system caused by the boundary effect occurs in the last two cases, resulting in the breakup of spiral wave near the boundary. With our defined average order measure of spiral wave (AOMSW), we quantify the degree of order of the system when the boundary-induced breakup of spiral wave happens. By analysing the AOMSW and outer diameter R of the spiral tip orbit, it is easy to find that this boundary effect is correlated with large values of R, especially under the Dirichlet boundary condition. This correlation is nonlinear, so the AOMSW sometimes oscillates with the variation of ε.展开更多
A three-wave interaction (3WI) code is developed to study the stimulated Raman scattering (SRS) in both absolute and convective regimes. In the simulations, the time and spatial evolutions of a plasma wave are des...A three-wave interaction (3WI) code is developed to study the stimulated Raman scattering (SRS) in both absolute and convective regimes. In the simulations, the time and spatial evolutions of a plasma wave are described by temporal growth rate and spatial factor, respectively. The spatial factors in different phases and different instability regimes are investigated. It is found that the spatial factor is caused by the finite velocity of the pump wave in the first phase and by damping in the last phase. With inclusion of the spatial factor, the temporal growth rate decreases and the threshold for SRS for a finite frequency mismatch increases. Meanwhile, the effects of wave frequency mismatch on the temporal growth rate are also discussed.展开更多
In this paper, we consider spatial-temporal correlation functions of the turbulent velocities. With numerical simulations on the Gledzer-Ohkitani-Yamada (GOY) shell model, we show that the correlation function decay...In this paper, we consider spatial-temporal correlation functions of the turbulent velocities. With numerical simulations on the Gledzer-Ohkitani-Yamada (GOY) shell model, we show that the correlation function decays exponentially. The advecting velocity field is regarded as a colored noise field, which is spatially and temporally correlative. For comparison, we are also given the scaling exponents of passive scalars obtained by the Gaussian random velocity field, the multi-dimensional normal velocity field and the She-Leveque velocity field, introduced by She, et al. We observe that extended self-similarity sealing exponents H(p)/H(2) of passive scalar obtained by the colored noise field are more anomalous than those obtained by the other three velocity fields.展开更多
We study how the decoherence of macroscopic objects originates intrinsically from the relativistic effect. With the degree of freedom of the center of mass(CM) characterizing the collective quantum state of a macros...We study how the decoherence of macroscopic objects originates intrinsically from the relativistic effect. With the degree of freedom of the center of mass(CM) characterizing the collective quantum state of a macroscopic object(MO),it is found that an MO consisting of N particles can decohere with a time scale of no more than p (√N)^-1. Here, the special relativity can induce the coupling of the collective motion mode and the relative motion modes in an order of 1/c^2, which intrinsically results in the above minimum decoherence.展开更多
In this paper, the dynamics behaviors on fo-δ parameter surface is investigated for Gledzer-Ohkitani- Yamada model We indicate the type of intermittency chaos transitions is saddle node bifurcation. We plot phase dia...In this paper, the dynamics behaviors on fo-δ parameter surface is investigated for Gledzer-Ohkitani- Yamada model We indicate the type of intermittency chaos transitions is saddle node bifurcation. We plot phase diagram on fo-δ parameter surface, which is divided into periodic, quasi-periodic, and intermittent chaos areas. By means of varying Taylor-microscale Reynolds number, we calculate the extended self-similarity of velocity structure function.展开更多
This paper examines the existence of weak solutions to a class of the high-order Korteweg-de Vries(KdV)system in Rn.We first prove,by the Leray-Schauder principle and the vanishing viscosity method,that any initial da...This paper examines the existence of weak solutions to a class of the high-order Korteweg-de Vries(KdV)system in Rn.We first prove,by the Leray-Schauder principle and the vanishing viscosity method,that any initial data N-dimensional vector value function u0(x)in Sobolev space H^(s)(R^(n))(s≥1)leads to a global weak solution.Second,we investigate some special regularity properties of solutions to the initial value problem associated with the KdV type system in R^(2)and R^(3).展开更多
The nonlinear Schrdinger equation is one of the basic models for nonlinear waves.In some circumstances,randomness has to be taken into account and it often occurs through a random potential.Here,we consider the foll...The nonlinear Schrdinger equation is one of the basic models for nonlinear waves.In some circumstances,randomness has to be taken into account and it often occurs through a random potential.Here,we consider the following展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.12202070 and 11772065)the Foundation of National Key Laboratory of Computational Physics.
文摘The interaction between shock waves and multiple cylinders,referred to as shock–cylinder interaction(SCI),is an important phenomenon in science and engineering.However,its underlying physical mechanisms remain unclear.This study entailed the numerical simulation of the aerobreakup of two tandem water columns subjected to a high-speed gas flow by using an adaptive mesh refinement(AMR)-based diffusion-interface model.The objective was to elucidate the changes in water–column deformation patterns over a wide range of Weber numbers.Statistical analysis was performed to examine the deformation of the water columns in vertical directions.Results reveal distinct deformation patterns between the two columns as the Weber number increases.Additionally,an extended exponential stretching law model was devised,and its improved capability to predict the deformation patterns was demonstrated.
基金supported by the National Science Foundation of China(No.12347103)the Fundamental Research Funds for the Central Universities(No.226-2022-00216)。
文摘Space objects such as spacecraft or missiles may be exposed to intense X-rays in outer space,leading to severe damage.The reinforcement of these objects to reduce the damage caused by X-ray irradiation is a significant concern.The blow-off impulse(BOI)is a crucial physical quantity for investigating material damage induced by X-ray irradiation.However,the accurate calculation of BOI is challenging,particularly for large deformations of materials with complex configurations.In this study,we develop a novel two-dimensional particle-in-cell code,Xablation2D,to calculate BOIs under far-field X-ray irradiation.This significantly reduces the dependence of the numerical simulation on the grid shape.The reliability of this code is verified by simulation results from open-source codes,and the calculated BOIs are consistent with the experimental and analytical results.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1405300)the National Natural Science Foundation of China(Grant Nos.11734010,12074428,12174358,and 92265208)NSAF(Grant No.U2330401)。
文摘We study superradiant phase transitions in a hybrid system of a two-dimensional Bose–Einstein condensate of atoms and two cavities arranged with a tilt angle.By adjusting the loss rate of cavities,we map out the phase diagram of steady states within a mean field framework.It is found that when the loss rates of the two cavities are different,superradiant transitions may not occur at the same time in the two cavities.A first-order phase transition is observed between the states with only one cavity in superradiance and both in superradiance.In the case that both cavities are superradiant,a net photon current is observed flowing from the cavity with small decay rate to the one with large decay rate.The photon current shows a non-monotonic dependence on the loss rate difference,owing to the competition of photon number difference and cavity field phase difference.Our findings can be realized and detected in experiments.
基金National Key Research and Development Program of China under Grant No.2019YFA0307703the Major Research Plan of the National Natural Science Foundation of China under Grant No.91850201the National Natural Science Foundation of China under Grant No.11974426.
文摘Isolated attosecond pulses with a duration of 88 as are generated in the spectral range of 29–72 eV using double optical gating technique.The gate width is set to be shorter than half the optical cycle to avoid carrier envelop phase stabilization of the 4.2 fs driving laser pulses centered at 800 nm.The attosecond pulse duration is measured with the technique of frequency resolved optical gating for complete reconstruction of attosecond bursts.
文摘In this paper, we prove the existence and uniqueness of the weak solution to the incompressible Navier-Stokes-Landau-Lifshitz equations in two-dimension with finite energy.The main techniques is the Faedo-Galerkin approximation and weak compactness theory.
文摘In most collisional schemes of x-ray laser (XRL) experiments, a bow-like intensity distribution of XRL is often observed, and it is generally ascribed to the two-dimensional hydrodynamic behaviour of expanding plasma. In order to better understand its essence in physics, a newly developed two-dimensional non-equilibrium radiation hydrodynamic code XRL2D is used to simulate a quasi-steady state Ni-like Ag XRL experiment on ShenGuang-Ⅱfacility. The simulation results show that the bow-like distribution of Ni-like ions caused by over-ionization in the central area of plasma is responsible for the bow-like shape of the XRL intensity distribution observed.
基金the National Natural Science Foundation of China under Grant Nos 11725417 and 11575027the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics under Grant No U1730449,and the Science Challenge Project under Grant No TZ2018005
文摘The elaborate energy and momentum spectra of ionized electrons from atoms in laser fields suggest that the ionization dynamics described by tunneling theory should be modified. Although great efforts have been carried out within semiclassical models, there are few discussions describing the multiphoton absorption process within a quantum framework. Comparing the results obtained with the time-dependent Schr?dinger equation(TDSE)and the Keldysh–Faisal–Reiss(KFR) theory, we study the nonperturbative effects of ionization dynamics beyond the KFR theory. The difference in momentum spectra between multiphoton and tunneling regimes is understood in a unified picture with virtual multiphoton absorption processes. For the multiphoton regime, the momentum spectra can be obtained by coherent interference of each periodic contribution. However, the interference of multiphoton absorption peaks will result in a complex structure of virtual multiphoton bands in the tunneling regime. It is shown that the virtual spectra will be almost continuous in the tunneling regime instead of the discrete levels found in the multiphoton regime. Finally, with a model combining the TDSE and the KFR theory,we try to understand the different effects of virtual multiphoton processes on ionization dynamics.
文摘Laser-induced damage often determines the effective lifetime of an optic in large high-energy laser facilities. We present the damage performance on the rear surface of a large-aperture KDP crystal for 351 nm, 5ns laser pulses. Surface damage shows a lower threshold than bulk damage after conditioning. Craters initiated on the scratch are found to increase with the shot number before filling the scratch. The experimental results reveal that damage initiation is mainly caused by extrinsic nanoabsorbers buried in the surface during the large-aperture laser operation.
基金Project supported by the NSAF,China(Grant No.U1730449)the National Natural Science Foundation of China(Grant Nos.11904341,11774322,91850201,and 11874066)
文摘The high-order harmonic generation from a model solid structure driven by an intense laser pulse is investigated using the semiconductor Bloch equations(SBEs). The main features of harmonic spectrum from SBEs agree well with the result of the time-dependent Schro¨dinger equation(TDSE), and the cut-off energy can be precisely estimated by the recollision model. With increasing the field strength, the harmonic spectrum shows an extra plateau. Based on the temporal population of electron and the time–frequency analysis, the harmonics in the extra plateau are generated by the Bloch oscillation. Due to the ultrafast time response of the Bloch electron, the generated harmonics provide a potential source of shorter isolated attosecond pulse.
文摘In the absorption chamber of a high-energy laser energy meter, water is directly used as an absorbing medium and the interaction of the high-power laser and the water flow can produce a variety of physical phenomena such as phase transitions. The unit difference method is adopted to deduce the phase transition model for water flow irradiated by a high-energy laser. In addition, the model is simulated and verified through experiments. Among them, the experimental verification uses the photographic method, shooting the distribution and the form of the air mass of water flow in different operating conditions, which are compared with the simulation results. The research shows that it is achievable to reduce the intensity of the phase transition by increasing the water flow, reducing the power intensity of the beam, shortening the distance the beam covers, reducing the initial water temperature or adopting a shorter wavelength laser. The study's results will provide the reference for the design of a water-direct-absorption-type high-energy laser energy meter as well as an analysis of the interaction processes of other similar high-power lasers and water flow.
文摘The author considers the global existence and global nonexistence of the initial-boundary value problem for some degenerate hyperbolic equation of the form utt- div(|△↓|^P-2 △↓u)=|u|^m u, (x,t)∈[0, +∞) ×Ω with p 〉 2 and m 〉 0. He deals with the global solutions by D.H.Sattinger's potential well ideas. At the same time, when the initial energy is positive, but appropriately bounded, the global nonexistence of solutions is verified by using the analysis method.
文摘The Helmholtz SchrSdinger method is employed to study the electric field standing wave caused by coupling through a simple slot. There is a good agreement between the numerical results and the resonant conditions presented by the Helmholtz-Schrodinger method. Thus, it can be used in similar cases where the amplitude of the electric field is the important quantity or eigenfunctions of the Schrodinger equation are needed for complicated quantum structures with hard wall boundary conditions.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.11875050 and 12088101)NSAF(Grant No.U1930403).
文摘Minimizing the effect of noise is essential for quantum computers.The conventional method to protect qubits against noise is through quantum error correction.However,for current quantum hardware in the so-called noisy intermediate-scale quantum(NISQ)era,noise presents in these systems and is too high for error correction to be beneficial.Quantum error mitigation is a set of alternative methods for minimizing errors,including error extrapolation,probabilistic error cancella-tion,measurement error mitigation,subspace expansion,symmetry verification,virtual distillation,etc.The requirement for these methods is usually less demanding than error correction.Quantum error mitigation is a promising way of reduc-ing errors on NISQ quantum computers.This paper gives a comprehensive introduction to quantum error mitigation.The state-of-art error mitigation methods are covered and formulated in a general form,which provides a basis for comparing,combining and optimizing different methods in future work.
基金Project supported by the Major Program of the National Natural Science Foundation for (Grant No 10335010) and the National Natural Science Foundation-the Science Foundation of China Academy of Engineering Physics (NSAF) (Grant No 10576005). We are grateful to Professor Li Jing-Hui and Dr Yuan Guo-Yong for valuable discussion.
文摘In this paper, we investigate the breakup of spiral wave under no-flux, periodic and Dirichlet boundary conditions respectively. When the parameter ε is close to a critical value for Doppler-induced wave breakup, the instability of the system caused by the boundary effect occurs in the last two cases, resulting in the breakup of spiral wave near the boundary. With our defined average order measure of spiral wave (AOMSW), we quantify the degree of order of the system when the boundary-induced breakup of spiral wave happens. By analysing the AOMSW and outer diameter R of the spiral tip orbit, it is easy to find that this boundary effect is correlated with large values of R, especially under the Dirichlet boundary condition. This correlation is nonlinear, so the AOMSW sometimes oscillates with the variation of ε.
基金supported by Sci. & Tech.Funds of CAEP(Nos.2010A0102004 and 2010B0102018)National Natural Science Foundation of China(Nos.11075025,10975023,10935003,10835003)
文摘A three-wave interaction (3WI) code is developed to study the stimulated Raman scattering (SRS) in both absolute and convective regimes. In the simulations, the time and spatial evolutions of a plasma wave are described by temporal growth rate and spatial factor, respectively. The spatial factors in different phases and different instability regimes are investigated. It is found that the spatial factor is caused by the finite velocity of the pump wave in the first phase and by damping in the last phase. With inclusion of the spatial factor, the temporal growth rate decreases and the threshold for SRS for a finite frequency mismatch increases. Meanwhile, the effects of wave frequency mismatch on the temporal growth rate are also discussed.
基金Project supported by the Major Program of the National Natural Science Foundation (Grant No 10335010)the National Natural Science Foundation-the Science Foundation of China Academy of Engineering Physics NSAF(Grant No 10576005)
文摘In this paper, we consider spatial-temporal correlation functions of the turbulent velocities. With numerical simulations on the Gledzer-Ohkitani-Yamada (GOY) shell model, we show that the correlation function decays exponentially. The advecting velocity field is regarded as a colored noise field, which is spatially and temporally correlative. For comparison, we are also given the scaling exponents of passive scalars obtained by the Gaussian random velocity field, the multi-dimensional normal velocity field and the She-Leveque velocity field, introduced by She, et al. We observe that extended self-similarity sealing exponents H(p)/H(2) of passive scalar obtained by the colored noise field are more anomalous than those obtained by the other three velocity fields.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11421063 and 11534002)the National Key Basic Research Program of China(Grant No.2014CB921403)+1 种基金the National Key Research and Development Program of China(Grant No.2016YFA0301201)and the NSAF(Grant No.U1530401)
文摘We study how the decoherence of macroscopic objects originates intrinsically from the relativistic effect. With the degree of freedom of the center of mass(CM) characterizing the collective quantum state of a macroscopic object(MO),it is found that an MO consisting of N particles can decohere with a time scale of no more than p (√N)^-1. Here, the special relativity can induce the coupling of the collective motion mode and the relative motion modes in an order of 1/c^2, which intrinsically results in the above minimum decoherence.
基金supported by National Natural Science Foundation-the Science Foundation of China Academy of Engineering Physics (NSAF) under Grant No. 10576076the Major Projects of National Natural Science Foundation of China under Grant No. 10335010
文摘In this paper, the dynamics behaviors on fo-δ parameter surface is investigated for Gledzer-Ohkitani- Yamada model We indicate the type of intermittency chaos transitions is saddle node bifurcation. We plot phase diagram on fo-δ parameter surface, which is divided into periodic, quasi-periodic, and intermittent chaos areas. By means of varying Taylor-microscale Reynolds number, we calculate the extended self-similarity of velocity structure function.
文摘This paper examines the existence of weak solutions to a class of the high-order Korteweg-de Vries(KdV)system in Rn.We first prove,by the Leray-Schauder principle and the vanishing viscosity method,that any initial data N-dimensional vector value function u0(x)in Sobolev space H^(s)(R^(n))(s≥1)leads to a global weak solution.Second,we investigate some special regularity properties of solutions to the initial value problem associated with the KdV type system in R^(2)and R^(3).
基金This work was partially supported by Science Foundation of CAEP.
文摘The nonlinear Schrdinger equation is one of the basic models for nonlinear waves.In some circumstances,randomness has to be taken into account and it often occurs through a random potential.Here,we consider the following