期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Recent Advances in Patterning Strategies for Full‑Color Perovskite Light‑Emitting Diodes
1
作者 Gwang Heon Lee Kiwook Kim +2 位作者 Yunho Kim Jiwoong Yang Moon Kee Choi 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期99-137,共39页
Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability,pure color emission with rem... Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability,pure color emission with remarkably narrow bandwidths,high quantum yield,and solution processability.Despite recent advances have pushed the luminance efficiency of monochromic perovskite light-emitting diodes(PeLEDs)to their theoretical limits,their current fabrication using the spincoating process poses limitations for fabrication of full-color displays.To integrate PeLEDs into full-color display panels,it is crucial to pattern red–green–blue(RGB)perovskite pixels,while mitigating issues such as cross-contamination and reductions in luminous efficiency.Herein,we present state-of-the-art patterning technologies for the development of full-color PeLEDs.First,we highlight recent advances in the development of efficient PeLEDs.Second,we discuss various patterning techniques of MPHs(i.e.,photolithography,inkjet printing,electron beam lithography and laserassisted lithography,electrohydrodynamic jet printing,thermal evaporation,and transfer printing)for fabrication of RGB pixelated displays.These patterning techniques can be classified into two distinct approaches:in situ crystallization patterning using perovskite precursors and patterning of colloidal perovskite nanocrystals.This review highlights advancements and limitations in patterning techniques for PeLEDs,paving the way for integrating PeLEDs into full-color panels. 展开更多
关键词 PEROVSKITE Light-emitting diode Full-color display High-resolution patterning ELECTROLUMINESCENCE
下载PDF
Segmented tomographic evaluation of structural degradation of carbon support in proton exchange membrane fuel cells
2
作者 Jung A.Hong Min-Hyoung Jung +10 位作者 Sung Yong Cho Eun-Byeol Park Daehee Yang Young-Hoon Kim Sang-Hyeok Yang Woo-Sung Jang Jae Hyuck Jang Hyo June Lee Sungchul Lee Hu Young Jeong Young-Min Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期359-367,I0010,共10页
The variation of the three-dimensional(3D)structure of the membrane electrode of a fuel cell during proton exchange cycling involves the corrosion/compaction of the carbon support.The increasing degradation of the car... The variation of the three-dimensional(3D)structure of the membrane electrode of a fuel cell during proton exchange cycling involves the corrosion/compaction of the carbon support.The increasing degradation of the carbon structure continuously reduces the electrocatalytic performance of proton exchange membrane fuel cells(PEM-FCs).This phenomenon can be explained by performing 3D tomographic analysis at the nanoscale.However,conventional tomographic approaches which present limited experimental feasibility,cannot perform such evaluation and have not provided sufficient structural information with statistical significance thus far.Therefore,a reliable methodology is required for the 3D geometrical evaluation of the carbon structure.Here,we propose a segmented tomographic approach which employs pore network analysis that enables the visualization of the geometrical parameters corresponding to the porous carbon structure at a high resolution.This approach can be utilized to evaluate the 3D structural degradation of the porous carbon structure after cycling in terms of local surface area,pore size distribution,and their 3D networking.These geometrical parameters of the carbon body were demonstrated to be substantially reduced owing to the cycling-induced degradation.This information enables a deeper understanding of the degradation phenomenon of carbon supports and can contribute to the development of stable PEM-FC electrodes. 展开更多
关键词 Electron tomography Fuel cell Proton exchange membrane Membrane electrode assembly Carbon corrosion
下载PDF
控制碘化铅形貌两步连续刮涂法大面积制备甲脒基钙钛矿薄膜
3
作者 文永涛 李静 +6 位作者 高晓峰 田聪聪 朱昊 余国木 张晓俐 Hyesung Park 黄福志 《物理化学学报》 SCIE CAS CSCD 北大核心 2023年第2期71-80,共10页
钙钛矿太阳能电池在实现高性能光伏器件方面展现出巨大的商业化应用前景,但面临着一个最主要的挑战是开发工业化规模生产的大面积高质量钙钛矿薄膜制备工艺。在本研究中,为解决大面积印刷难题,通过两步连续刮涂法制备甲脒基钙钛矿吸光... 钙钛矿太阳能电池在实现高性能光伏器件方面展现出巨大的商业化应用前景,但面临着一个最主要的挑战是开发工业化规模生产的大面积高质量钙钛矿薄膜制备工艺。在本研究中,为解决大面积印刷难题,通过两步连续刮涂法制备甲脒基钙钛矿吸光层。两步法中第一步沉积的PbI_(2)很容易形成致密的薄膜,这将导致后续沉积的有机胺盐无法和PbI_(2)充分完全反应,在钙钛矿薄膜中残留PbI_(2),这会严重影响载流子的传输。为了实现理想的多孔PbI_(2)薄膜结构,我们通过在PbI_(2)前驱体溶液中引入四亚甲基亚砜(THTO)。通过形成PbI_(2)·THTO络合物,PbI_(2)的结晶过程被有效控制,易形成片状的PbI_(2)晶粒并沿着垂直基底方向上排列,得到了理想的纳米通道。这为后续的有机胺盐渗入提供了理想的纳米通道。最终5 cm×5 cm模组实现了18.65%的功率转化效率,并具有出色的存储和热稳定性。这一结果展现了两步连续刮涂法策略在制备大面积钙钛矿太阳能电池方面具备一定的优势。 展开更多
关键词 钙钛矿太阳能电池 两步法 刮涂 印刷 模组
下载PDF
Efficient flexible perovskite solar cells and modules using a stable SnO_(2)-nanocrystal isopropanol dispersion
4
作者 Zhiwei Su Jing Li +10 位作者 Ruixuan Jiang Shujie Zhang Chengkai Jin Feng Ye Bingcan Ke Mengjun Zhou Jinhui Tong Hyesung Park Fuzhi Huang Yi-Bing Cheng Tongle Bu 《Nano Research》 SCIE EI CSCD 2024年第4期2704-2711,共8页
The outstanding advantages of lightweight and flexibility enable flexible perovskite solar cells(PSCs)to have great application potential in mobile energy devices.Due to the low cost,low-temperature processibility,and... The outstanding advantages of lightweight and flexibility enable flexible perovskite solar cells(PSCs)to have great application potential in mobile energy devices.Due to the low cost,low-temperature processibility,and high electron mobility,SnO_(2) nanocrystals have been widely employed as the electron transport layer in flexible PSCs.To prepare high-quality SnO_(2) layers,a monodispersed nanocrystal solution is normally used.However,the SnO_(2) nanocrystals can easily aggregate,especially after long periods of storage.Herein,we develop a green and cost-effective strategy for the synthesis of high-quality SnO_(2) nanocrystals at low temperatures by introducing small molecules of glycerol,obtaining a stable and well-dispersed SnO_(2)-nanocrystal isopropanol dispersion successfully.Due to the enhanced dispersity and super wettability of this alcohol-based SnO_(2)-nanocrystal solution,large-area smooth and dense SnO_(2) films are easily deposited on the plastic conductive substrate.Furthermore,this contributes to effective charge transfer and suppressed non-radiative recombination at the interface between the SnO_(2) and perovskite layers.As a result,a greatly enhanced power conversion efficiency(PCE)of 21.8%from 19.2%is achieved for small-area flexible PSCs.A large-area 5 cm×5 cm flexible perovskite solar mini-module with a champion PCE of 16.5%and good stability is also demonstrated via this glycerol-modified SnO_(2)-nanocrystal isopropanol dispersion approach. 展开更多
关键词 tin oxide isopropanol dispersion colloid stability flexible perovskite solar cells
原文传递
Erratum to:Efficient flexible perovskite solar cells and modules using a stable SnO_(2)-nanocrystal isopropanol dispersion
5
作者 Zhiwei Su Jing Li +10 位作者 Ruixuan Jiang Shujie Zhang Chengkai Jin Feng Ye Bingcan Ke Mengjun Zhou Jinhui Tong Hyesung Park Fuzhi Huang Yi-Bing Cheng Tongle Bu 《Nano Research》 SCIE EI CSCD 2024年第5期4641-4642,共2页
Erratum to Nano Research,2024,17(4):2704-2711 https://doi.org/10.1007/s12274-023-6115-y(1)In the article,the table of contents(TOC)image was unfortunately mispresented.
关键词 PEROVSKITE DISPERSION MODULES
原文传递
Highly impermeable and flexible silica encapsulation films synthesized by sol-gel process 被引量:1
6
作者 Si-Hoon Kim Gyeong-Seok Hwang +6 位作者 Donghwan Koo Dong-Hyun Seo Ye-Pil Kwon Hansuek Lee Hyesung Park Eun-chae Jeon Ju-Young Kim 《Nano Research》 SCIE EI CSCD 2022年第8期7476-7483,共8页
Silica thin films synthesized sol–gel process are proposed as flexible encapsulation materials.A sol–gel process provides a dense and stable amorphous silica structure,yielding an extremely high elastic deformation ... Silica thin films synthesized sol–gel process are proposed as flexible encapsulation materials.A sol–gel process provides a dense and stable amorphous silica structure,yielding an extremely high elastic deformation limit of 4.9%and extremely low water vapor transmission rate(WVTR)of 2.90×10^(−4)g/(m^(2)∙day)at 60℃and relative humidity of 85%.The WVTR is not degraded by cyclic bending deformations for the bending radius corresponding to a tensile strain of 3.3%in the silica encapsulation film,implying that the silica thin film is robust against the formation of pinhole-type defects by cyclic bending deformations.Flexible organic solar cells encapsulated with the silica films operate without degradation in power conversion efficiency for 50,000 bending cycles for a bending radius of 6 mm. 展开更多
关键词 silica thin film SOL-GEL flexible encapsulation mechanical reliability flexible organic solar cell
原文传递
Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO_(3) thin film
7
作者 Wooseon Choi Bumsu Park +10 位作者 Jaejin Hwang Gyeongtak Han Sang-Hyeok Yang Hyeon Jun Lee Sung Su Lee Ji Young Jo Albina Y.Borisevich Hu Young Jeong Sang Ho Oh Jaekwang Lee Young-Min Kim 《Chinese Physics B》 SCIE EI CAS 2024年第9期57-66,共10页
The functionalities and diverse metastable phases of multiferroic BiFeO_(3)(BFO)thin films depend on the misfit strain.Although mixed phase-induced strain relaxation in multiphase BFO thin films is well known,it is un... The functionalities and diverse metastable phases of multiferroic BiFeO_(3)(BFO)thin films depend on the misfit strain.Although mixed phase-induced strain relaxation in multiphase BFO thin films is well known,it is unclear whether a singlecrystalline BFO thin film can accommodate misfit strain without the involvement of its polymorphs.Thus,understanding the strain relaxation behavior is key to elucidating the lattice strain–property relationship.In this study,a correlative strain analysis based on dark-field inline electron holography(DIH)and quantitative scanning transmission electron microscopy(STEM)was performed to reveal the structural mechanism for strain accommodation of a single-crystalline BFO thin film.The nanoscale DIH strain analysis results indicated a random combination of multiple strain states that acted as a primary strain relief,forming irregularly strained nanodomains.The STEM-based bond length measurement of the corresponding strained nanodomains revealed a unique strain accommodation behavior achieved by a statistical combination of multiple modes of distorted structures on the unit-cell scale.The globally integrated strain for each nanodomain was estimated to be close to􀀀1.5%,irrespective of the nanoscale strain states,which was consistent with the fully strained BFO film on the SrTiO_(3) substrate.Density functional theory calculations suggested that strain accommodation by the combination of metastable phases was energetically favored compared to single-phase-mediated relaxation.This discovery allows a comprehensive understanding of strain accommodation behavior in ferroelectric oxide films,such as BFO,with various low-symmetry polymorphs. 展开更多
关键词 BiFeO_(3) scanning transmission electronmicroscopy electron holography multiferroic material strain mapping
下载PDF
Controllable substitutional vanadium doping in wafer-scale molybdenum disulfide films 被引量:2
8
作者 Jihyung Seo Eunbin Son +3 位作者 Jiha Kim Sun-Woo Kim Jeong Min Baik Hyesung Park 《Nano Research》 SCIE EI CSCD 2023年第2期3415-3421,共7页
Substitutional atomic doping of transition metal dichalcogenides(TMDs)in the chemical vapor deposition(CVD)process is a promising and effective strategy for modifying their physicochemical properties.However,the conve... Substitutional atomic doping of transition metal dichalcogenides(TMDs)in the chemical vapor deposition(CVD)process is a promising and effective strategy for modifying their physicochemical properties.However,the conventional CVD method only allows narrow-range modulation of the dopant concentration owing to the low reactivity of the precursors.Moreover,the growth of wafer-scale monolayer TMD films with high dopant concentrations is much more challenging.Herein,we report a facile doping approach based on liquid precursor-mediated CVD process for achieving high vanadium(V)doping in the MoS_(2)lattice with excellent doping uniformity and stability.The lateral growth of the host MoS_(2)lattice and the reactivity of the V precursor were simultaneously improved by introducing an alkali metal halide as a reaction promoter.The metal halide promoter enabled the wafer-scale synthesis of V-incorporated MoS_(2)monolayer film with excessively high doping concentrations.The excellent wafer-scale uniformity of the highly V-doped MoS_(2)film was confirmed through a series of microscopic,spectroscopic,and electrical analyses. 展开更多
关键词 doping concentration reaction promoter substitutional doping transition metal dichalcogenides wafer-scale growth
原文传递
Nitrogen‐doped tin oxide electron transport layer for stable perovskite solar cells with efficiency over 23% 被引量:4
9
作者 Yanping Mo Chao Wang +8 位作者 Xuntian Zheng Peng Zhou Jing Li Xinxin Yu Kaizhong Yang Xinyu Deng Hyesung Park Fuzhi Huang Yi‐Bing Cheng 《Interdisciplinary Materials》 2022年第2期309-315,共7页
Tin oxide has made a major breakthrough in high-efficiency perovskite solar cells(PSCs)as an efficient electron transport layer by the low-temperature chemical bath deposition method.However,tin oxide often contains p... Tin oxide has made a major breakthrough in high-efficiency perovskite solar cells(PSCs)as an efficient electron transport layer by the low-temperature chemical bath deposition method.However,tin oxide often contains pernicious defects,resulting in unsatisfactory performance.Herein,we develop high-quality tin oxide films via a nitrogen-doping strategy for high-efficiency and stable planar PSCs.The aligned energy level at the interface of doped SnO_(2)/perovskite,more excellent charge extraction and reduced nonradiative recombination contribute to the enhanced efficiency and stability.Correspondingly,the power conversion efficiency of the devices based on N‐SnO_(2) film increases to 23.41% from 20.55% of the devices based on the pristine SnO_(2).The N-SnO_(2) devices show an outstanding stability retaining 97.8% of the initial efficiency after steady-state output at a maximum power point for 600s under standard AM1.5G continuous illumination without encapsulation,while less than 50% efficiency remains for the devices based on pristine SnO_(2).This simple scalable strategy has shown great promise toward highly efficient and stable PSCs. 展开更多
关键词 electron transport layer N doping perovskite solar cell SnO_(2)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部