The effects of NaCl salinity and NO^-3 on growth, root morphology, and nitrogen uptake of a halophyte Suaeda physophora were evaluated in a factorial experiment with four concentrations of NaCl (1, 150, 300, and 450 ...The effects of NaCl salinity and NO^-3 on growth, root morphology, and nitrogen uptake of a halophyte Suaeda physophora were evaluated in a factorial experiment with four concentrations of NaCl (1, 150, 300, and 450 mmol L^-1) and three NO^-3 levels (0.05, 5, and 10 mmol L^-1) in solution culture for 30 d. Addition of NO^-3 at 10 mmol L^-1 significantly improved the shoot (P 〈 0.001) and root (P 〈 0.001) growth and the promotive effect of NO^-3 was more pronounced on root dry weight despite the high NaCl concentration in the culture solution, leading to a significant increase in the root:shoot ratio (P 〈 0.01). Lateral root length, but not primary root length, considerably increased with increasing NaCl salinity and NO^-3 levels (P 〈 0.001), implying that Na^+ and NO3^- in the culture solution simultaneously stimulated lateral root growth. Concentrations of Na^+ in plant tissues were also significantly increased by higher NaCl treatments (P 〈 0.001). At 10 mmol L^-1 NO^-3, the concentrations of NO^-3 and total nitrogen and nitrate reductase activities in the roots were remarkably reduced by increasing salinity (P 〈 0.001), but were unaffected in the shoots. The results indicated that the fine lateral root development and effective nitrogen uptake of the shoots might contribute to high salt tolerance of S. physophora under adequate NO^-3 supply.展开更多
Tdmercaptotriazine-functionalized polystyrene chelating resin was prepared and employed for the adsorption of Ag(I) from aqueous solution. The adsorbent was characterized according to the following techniques: Four...Tdmercaptotriazine-functionalized polystyrene chelating resin was prepared and employed for the adsorption of Ag(I) from aqueous solution. The adsorbent was characterized according to the following techniques: Fourier transform infrared spectroscopy, elemental analysis, scanning electron microscopy and the Brunauer-Emmet-Teller method. The effects of initial Ag(I) concentration, contact time, solution pH and coexisting ions on the adsorption capacity of Ag(I) were systematically investigated. The maximum adsorption capacity of AgO) was up to 187.1 mg/g resin at pH 0.0 and room temperature. The kinetic experiments indicated that the adsorption rate of Ag(I) onto the chelating resin was quite fast in the first 60 rain and reached adsorption equilibrium after 360 min. The adsorption process can be well described by the pseudo second-order kinetic model and the equilibrium adsorption isotherm was closely fitted by the Langmuir model. Moreover, the chelating resin could selectively adsorb more Ag(I) ions than other heavy metal ions including: Cu(Ⅱ), Zn(Ⅱ), Ni(Ⅱ), Pb(Ⅱ) and Cr(Ⅲ) during competitive adsorption in the binary metal species systems, which indicated that it was a highly selective adsorbent of Ag(I) from aqueous solution.展开更多
基金Supported by the Key Technology Program of the Xinjiang Uygur Autonomous Region, China (No.200733144-1)the Knowledge Innovation Project of the Chinese of Academy of Sciences (No.KSCX2-YW-N-41)
文摘The effects of NaCl salinity and NO^-3 on growth, root morphology, and nitrogen uptake of a halophyte Suaeda physophora were evaluated in a factorial experiment with four concentrations of NaCl (1, 150, 300, and 450 mmol L^-1) and three NO^-3 levels (0.05, 5, and 10 mmol L^-1) in solution culture for 30 d. Addition of NO^-3 at 10 mmol L^-1 significantly improved the shoot (P 〈 0.001) and root (P 〈 0.001) growth and the promotive effect of NO^-3 was more pronounced on root dry weight despite the high NaCl concentration in the culture solution, leading to a significant increase in the root:shoot ratio (P 〈 0.01). Lateral root length, but not primary root length, considerably increased with increasing NaCl salinity and NO^-3 levels (P 〈 0.001), implying that Na^+ and NO3^- in the culture solution simultaneously stimulated lateral root growth. Concentrations of Na^+ in plant tissues were also significantly increased by higher NaCl treatments (P 〈 0.001). At 10 mmol L^-1 NO^-3, the concentrations of NO^-3 and total nitrogen and nitrate reductase activities in the roots were remarkably reduced by increasing salinity (P 〈 0.001), but were unaffected in the shoots. The results indicated that the fine lateral root development and effective nitrogen uptake of the shoots might contribute to high salt tolerance of S. physophora under adequate NO^-3 supply.
基金supported by the Chinese Academy of Science and Technology Project in Support of Gansu (No.XBLZ-2011-013)
文摘Tdmercaptotriazine-functionalized polystyrene chelating resin was prepared and employed for the adsorption of Ag(I) from aqueous solution. The adsorbent was characterized according to the following techniques: Fourier transform infrared spectroscopy, elemental analysis, scanning electron microscopy and the Brunauer-Emmet-Teller method. The effects of initial Ag(I) concentration, contact time, solution pH and coexisting ions on the adsorption capacity of Ag(I) were systematically investigated. The maximum adsorption capacity of AgO) was up to 187.1 mg/g resin at pH 0.0 and room temperature. The kinetic experiments indicated that the adsorption rate of Ag(I) onto the chelating resin was quite fast in the first 60 rain and reached adsorption equilibrium after 360 min. The adsorption process can be well described by the pseudo second-order kinetic model and the equilibrium adsorption isotherm was closely fitted by the Langmuir model. Moreover, the chelating resin could selectively adsorb more Ag(I) ions than other heavy metal ions including: Cu(Ⅱ), Zn(Ⅱ), Ni(Ⅱ), Pb(Ⅱ) and Cr(Ⅲ) during competitive adsorption in the binary metal species systems, which indicated that it was a highly selective adsorbent of Ag(I) from aqueous solution.