The ceria-zirconia compound oxide-supported noble metal Pd(Pd@CZ)is widely used in three-way catalyst.Moreover,the surface structure of CZ plays an important role in catalytic activity of Pd.However,how to regulate th...The ceria-zirconia compound oxide-supported noble metal Pd(Pd@CZ)is widely used in three-way catalyst.Moreover,the surface structure of CZ plays an important role in catalytic activity of Pd.However,how to regulate the surface structure of CZ and clarify the structure–activity relationship is still a challenge.In this paper,a strategy is proposed to develop high activity Pd@CZ nanocatalysts by tuning Y doping sites in CZ.The precipitate-deposition method is developed to prepare the novel Ce_(0.485)Zr_(0.485)Y_(0.03)O_(2) composite with surface doping of Y(CZ-Y-S).In addition,the Pd@CZ-Y-S(Pd supported on CZ-Y-S)exhibits superior catalytic activity for HC,CO,and NO oxide,wherein,for CO and C_(3)H_(6) oxidation,the low-temperature activity of Pd@CZ-Y-S is still 20%higher than that of Pd@CZ-Y-B(Y bulk doping)and commercial Pd@CZ after 1000℃/4 h aging.The effect mechanism is further studied by density functional theory(DFT)calculation.Compared with Pd@CZ-Y-B,Pd@CZ-Y-S shows the lower CO oxide reaction energy barriers due to the weaker adsorption strength of O2.The Y surface doping strategy could provide valuable insights for the development of highly efficient Pd@CZ catalyst with extensive applications.展开更多
Ceria-zirconia mixed oxides(CZMO)are widely used in many important catalysis fields.However,pure CZMO is known to have poor thermal stability.In this paper,a strategy was proposed to design Ce_(0.475)Zr_(0.475)M_(0.05...Ceria-zirconia mixed oxides(CZMO)are widely used in many important catalysis fields.However,pure CZMO is known to have poor thermal stability.In this paper,a strategy was proposed to design Ce_(0.475)Zr_(0.475)M_(0.05)O_(2)(M=La,Y,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Er,Lu,and,Yb)oxide surface with high thermal stability by using first-principles molecular dynamics(FPMD)simulation and experiment method.Through the structure stability analysis at different temperatures,the surface energyγas a function of R_(ion)/D_(ave)is identified as a quantitative structure descriptor for analyzing the doping effect of rare earth(RE)elements on the thermal stability of Ce_(0.475)Zr_(0.475)M_(0.05)O_(2).By doping the suitable RE,γcan be adjusted to the optimal range to enhance the thermal stability of Ce_(0.475)Zr_(0.475)M_(0.05)O_(2).With this strategy,it can be predicted that the sequence of thermal stability improvement is Y>La>Gd>Nd>Pr>Pm>Sm>Eu>Tb>Er>Yb>Lu,which was further verified by our experiment results.After thermal treatment at 1100℃for 10 h,the specific surface area(SSA)of aged Y-CZ and La-CZ samples can reach 21.34 and 19.51 m~2/g,which is 63.02%and 49.04%higher than the CZMO sample without doping because the surface doping of Y and La is in favor of inhibiting the surface atoms thermal displacement.In a word,the strategy proposed in this work can be expected to provide a viable way for designing the highly efficient CZMO materials in extensive applications and promoting the usages of the high-abundance rare-earth elements Y and La.展开更多
基金This study was financially supported by the National Natural Science Foundation of China(No.52204376)Youth Foundation of Hebei Province(No.E2022103007)+2 种基金Young Elite Scientists Sponsorship Program by CAST 2021QNRC001High Tech Zone Science and Technology Project of Yanjiao(No.YJXM211211)Youth Fund Project of GRINM(No.G12620223129035).
文摘The ceria-zirconia compound oxide-supported noble metal Pd(Pd@CZ)is widely used in three-way catalyst.Moreover,the surface structure of CZ plays an important role in catalytic activity of Pd.However,how to regulate the surface structure of CZ and clarify the structure–activity relationship is still a challenge.In this paper,a strategy is proposed to develop high activity Pd@CZ nanocatalysts by tuning Y doping sites in CZ.The precipitate-deposition method is developed to prepare the novel Ce_(0.485)Zr_(0.485)Y_(0.03)O_(2) composite with surface doping of Y(CZ-Y-S).In addition,the Pd@CZ-Y-S(Pd supported on CZ-Y-S)exhibits superior catalytic activity for HC,CO,and NO oxide,wherein,for CO and C_(3)H_(6) oxidation,the low-temperature activity of Pd@CZ-Y-S is still 20%higher than that of Pd@CZ-Y-B(Y bulk doping)and commercial Pd@CZ after 1000℃/4 h aging.The effect mechanism is further studied by density functional theory(DFT)calculation.Compared with Pd@CZ-Y-B,Pd@CZ-Y-S shows the lower CO oxide reaction energy barriers due to the weaker adsorption strength of O2.The Y surface doping strategy could provide valuable insights for the development of highly efficient Pd@CZ catalyst with extensive applications.
基金Project supported by China Postdoctoral Science Foundation(2020M680616)Major State Research Development Program of Hebei province(20374202D)。
文摘Ceria-zirconia mixed oxides(CZMO)are widely used in many important catalysis fields.However,pure CZMO is known to have poor thermal stability.In this paper,a strategy was proposed to design Ce_(0.475)Zr_(0.475)M_(0.05)O_(2)(M=La,Y,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Er,Lu,and,Yb)oxide surface with high thermal stability by using first-principles molecular dynamics(FPMD)simulation and experiment method.Through the structure stability analysis at different temperatures,the surface energyγas a function of R_(ion)/D_(ave)is identified as a quantitative structure descriptor for analyzing the doping effect of rare earth(RE)elements on the thermal stability of Ce_(0.475)Zr_(0.475)M_(0.05)O_(2).By doping the suitable RE,γcan be adjusted to the optimal range to enhance the thermal stability of Ce_(0.475)Zr_(0.475)M_(0.05)O_(2).With this strategy,it can be predicted that the sequence of thermal stability improvement is Y>La>Gd>Nd>Pr>Pm>Sm>Eu>Tb>Er>Yb>Lu,which was further verified by our experiment results.After thermal treatment at 1100℃for 10 h,the specific surface area(SSA)of aged Y-CZ and La-CZ samples can reach 21.34 and 19.51 m~2/g,which is 63.02%and 49.04%higher than the CZMO sample without doping because the surface doping of Y and La is in favor of inhibiting the surface atoms thermal displacement.In a word,the strategy proposed in this work can be expected to provide a viable way for designing the highly efficient CZMO materials in extensive applications and promoting the usages of the high-abundance rare-earth elements Y and La.