Highly dispersed gadolinium zirconate(GZ)nanoparticles with fluorite structure were successfully synthesized by co-precipitation method,and their phase composition and microstructure,formation mechanism,and grain grow...Highly dispersed gadolinium zirconate(GZ)nanoparticles with fluorite structure were successfully synthesized by co-precipitation method,and their phase composition and microstructure,formation mechanism,and grain growth kinetics were investigated.The results suggest that the nanoparticles were obtained through hydroxide dehydration and solid phase reaction.High dispersion was accomplished by ethanol solvent to reduce the hydrogen bond and sodium dodecyl benzene sulfonate(SDBS)surfactant to increase the electrostatic repulsion between the nanoparticles.The grain growth activation energy of GZ powders calcined at lower temperature(<1200°C)is 86.5 kJ/mol(Ql),and the grain growth activation energy of GZ powders calcined at higher temperature(>1200°C)is 148.4 kJ/mol(Qh).The current study shows that the optimal process to synthesize dispersed GZ nanoparticles includes ethanol solvent,3 wt.%SDBS surfactant,and 1100°C as calcining temperature.展开更多
基金This study was supported by the National Key Research and Development Program of China(grant 2017YFB0306100)the Natural Science Foundation of Hunan Province(grant 2018JJ2524)the International scientific technological cooperation projects of China(grants 2015DFR50580 and 2013DFA31440).
文摘Highly dispersed gadolinium zirconate(GZ)nanoparticles with fluorite structure were successfully synthesized by co-precipitation method,and their phase composition and microstructure,formation mechanism,and grain growth kinetics were investigated.The results suggest that the nanoparticles were obtained through hydroxide dehydration and solid phase reaction.High dispersion was accomplished by ethanol solvent to reduce the hydrogen bond and sodium dodecyl benzene sulfonate(SDBS)surfactant to increase the electrostatic repulsion between the nanoparticles.The grain growth activation energy of GZ powders calcined at lower temperature(<1200°C)is 86.5 kJ/mol(Ql),and the grain growth activation energy of GZ powders calcined at higher temperature(>1200°C)is 148.4 kJ/mol(Qh).The current study shows that the optimal process to synthesize dispersed GZ nanoparticles includes ethanol solvent,3 wt.%SDBS surfactant,and 1100°C as calcining temperature.