Deflection is the most direct indicator that reflects the bearing capacity of the bridge and the overall stiffness. There are many ways to measure the deflection of Bridges, and the inclination angle method is the mos...Deflection is the most direct indicator that reflects the bearing capacity of the bridge and the overall stiffness. There are many ways to measure the deflection of Bridges, and the inclination angle method is the most commonly used indirect method, but the existing theory of inclination angle method is relatively complicated. Based on the facts of the bridge small inclination, this article proposes the method of obtaining the bridge deflection by the inclination of the secant line constructed from the adjacent measurement points. Firstly, according to the bending deformation curve of general simply supported beam, the deflection calculation formula of each measuring point is derived based on the assumption of small deformation and the inclination Angle of measuring point. Secondly, a large commercial finite element software ANSYS 10.0 is used to carry out numerical simulation on the simply-supported beam under concentrated load in mid-span, and the deflection results of the numerical simulation are compared and verified with the theoretical results of the proposed method. Finally, the measured deflection results of the simply-supported beam model under mid-span load are compared with the theoretical results of the proposed method. The verification results show that if the actual model is consistent with the theoretical model, the proposed method has good accuracy.展开更多
In this study,a composite powder capillary wick is prepared,manufactured by sintering copper powder and surface treated by low-temperature thermal oxidation.It is used to improve the performance of the capillary wick....In this study,a composite powder capillary wick is prepared,manufactured by sintering copper powder and surface treated by low-temperature thermal oxidation.It is used to improve the performance of the capillary wick.The forced flow method and infrared imaging method are used to test the permeability and capillary performance of the samples.The effects of different oxidation temperatures on the performance of capillary wick are investigated.The experimental results show that the wetting performance of the oxidized samples is significantly enhanced.With the increase of oxidation temperature,the permeability decreases.The capillary height and velocity of the thermally oxidized samples are significantly higher than those of the untreated capillary wick.However,the oxidation temperature needs to be adjusted to obtain the best capillary performance.The highest capillary performance is found at oxidation temperature of 300℃,with an increase of 46% compared to the untreated ones.Comparisons with other composite wicks show that the sample with an oxidation temperature of 300℃ has competitive capillary performance,making it a favorable alternative to two-phase heat transfer device.This study shows that combining low-temperature thermal oxidation technology with powder sintering is a convenient and effective method to improve the capillary performance of powder wicks.展开更多
Effect of different carbon sources on purification performance and change of microbial community structure in a novel AzN-MBR process were investigated, The results showed that when fed with acetate, propionate or ace...Effect of different carbon sources on purification performance and change of microbial community structure in a novel AzN-MBR process were investigated, The results showed that when fed with acetate, propionate or acetate and propionate mixed ( 1 : 1 ) as carbon sources, the effluent COD, NH4+- N, TN and TP were lower than 30, 5, 15 and 0.5 mg-L-1, respectively. However taken glucose as carbon source, the TP concentration of effluent reached 2.6 1 mg.L-1. Process analysis found that the amount of anaerobic phosphorus release would be the key factor to determine the above effectiveness. The acetate was beneficial to the growth of Candidatus Accumulibacter associated with biological phosphorus removal, which was the main cause of high efficiency phosphorus removal in this system. In addition, it could eliminate the Candidatus Competibacter associated with glycogen-accumulating organisms and guarantee high efficiency phosphorus uptake of phosphorus accumulating organisms in the system with acetate as carbon source.展开更多
Deflection is a significant indicator of bridge’s strength and its whole stiffness, so the research on deflection measurement is an important aspect of bridge health monitoring. There have existed many measurement me...Deflection is a significant indicator of bridge’s strength and its whole stiffness, so the research on deflection measurement is an important aspect of bridge health monitoring. There have existed many measurement methods of bridge deflection so far, while inclination method is gradually catching more and more attention for its fair obviously comprehensive advantages. However, the inclination method at present focuses on measuring the rotation of bridge’s section at testing point, that is, the tangent angle of deflection curve. With the tangent angle, the deflection curve can be determined by the methods of curve fitting or (and) integration or conjugate beam. The methods mentioned above, are not only complicated in calculation, but also bad in accuracy. The deflection measurement method proposed by this paper is based on measuring the inclination of two points initiatively in horizontal line, that is, the secant angle of the deflection curve, and on the simple triangle function operation. The proposed method is simple in theory, but good in accuracy for either static or dynamic load. The numerical simulation suggests that the error of the proposed method is less than 1%.展开更多
Expansive soils can pose tough issues to civil engineering applications. In a typical year, expansive soils can cause a greater financial loss than earthquakes, floods, hurricanes and tornadoes combined. Various means...Expansive soils can pose tough issues to civil engineering applications. In a typical year, expansive soils can cause a greater financial loss than earthquakes, floods, hurricanes and tornadoes combined. Various means have been studied to tackle problems associated with expansive soils. The majority of the methods are based on treatment of the soils. While the methods may be effective in some cases, their limitations are also obvious: The treatment normally involves complex processes and may not be eco-friendly in the long run. In many cases, the effectiveness of the treatment is uncertain. A retaining system that maintains a constant lateral pressure is proposed, which consists of three components: the retaining sheet, the slip-force device and the bracing column. The retaining sheet bears the pressure exerted by expansive backfills and is not embedded into the soils. Placed between the retaining sheet and bracing column, the slip-force device permits displacement of the retaining sheet but keeps the force on the sheet and the bracing column constant. The governing equation of the motion of the piston in the slip-force device is derived and a numerical simulation of a practical case is conducted based on the derived governing equation. Numerical results show that as the expansive soil swell, the spring force will increase and the piston will move accordingly. When the pressure of the oil in chamber reach<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">es</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> the open threshold of the unidirectional relief valve, the valve will open and the spring force and the oil pressure in the chamber will keep constant. The results also show that some parameters, such as damping ratio, have very slight influences on the device behavior, say 2 × 10</span><sup><span style="font-family:Verdana;">-6</span></sup><span style="font-family:Verdana;"> or even 4.8 × 10</span><sup><span style="font-family:Verdana;">-9</span></sup><span style="font-family:Verdana;">. Theoretical and numerical studies prove the effectiveness of the proposed retaining system.</span></span></span></span>展开更多
文摘Deflection is the most direct indicator that reflects the bearing capacity of the bridge and the overall stiffness. There are many ways to measure the deflection of Bridges, and the inclination angle method is the most commonly used indirect method, but the existing theory of inclination angle method is relatively complicated. Based on the facts of the bridge small inclination, this article proposes the method of obtaining the bridge deflection by the inclination of the secant line constructed from the adjacent measurement points. Firstly, according to the bending deformation curve of general simply supported beam, the deflection calculation formula of each measuring point is derived based on the assumption of small deformation and the inclination Angle of measuring point. Secondly, a large commercial finite element software ANSYS 10.0 is used to carry out numerical simulation on the simply-supported beam under concentrated load in mid-span, and the deflection results of the numerical simulation are compared and verified with the theoretical results of the proposed method. Finally, the measured deflection results of the simply-supported beam model under mid-span load are compared with the theoretical results of the proposed method. The verification results show that if the actual model is consistent with the theoretical model, the proposed method has good accuracy.
基金financial support for this research from the National Natural Science Foundation of China (52006040 and 51876044)the Natural Science Foundation of Guangdong Province(2019B090905005)the International Science and Technology Projects of Huangpu District of Guangzhou City(2020GH08)。
文摘In this study,a composite powder capillary wick is prepared,manufactured by sintering copper powder and surface treated by low-temperature thermal oxidation.It is used to improve the performance of the capillary wick.The forced flow method and infrared imaging method are used to test the permeability and capillary performance of the samples.The effects of different oxidation temperatures on the performance of capillary wick are investigated.The experimental results show that the wetting performance of the oxidized samples is significantly enhanced.With the increase of oxidation temperature,the permeability decreases.The capillary height and velocity of the thermally oxidized samples are significantly higher than those of the untreated capillary wick.However,the oxidation temperature needs to be adjusted to obtain the best capillary performance.The highest capillary performance is found at oxidation temperature of 300℃,with an increase of 46% compared to the untreated ones.Comparisons with other composite wicks show that the sample with an oxidation temperature of 300℃ has competitive capillary performance,making it a favorable alternative to two-phase heat transfer device.This study shows that combining low-temperature thermal oxidation technology with powder sintering is a convenient and effective method to improve the capillary performance of powder wicks.
文摘Effect of different carbon sources on purification performance and change of microbial community structure in a novel AzN-MBR process were investigated, The results showed that when fed with acetate, propionate or acetate and propionate mixed ( 1 : 1 ) as carbon sources, the effluent COD, NH4+- N, TN and TP were lower than 30, 5, 15 and 0.5 mg-L-1, respectively. However taken glucose as carbon source, the TP concentration of effluent reached 2.6 1 mg.L-1. Process analysis found that the amount of anaerobic phosphorus release would be the key factor to determine the above effectiveness. The acetate was beneficial to the growth of Candidatus Accumulibacter associated with biological phosphorus removal, which was the main cause of high efficiency phosphorus removal in this system. In addition, it could eliminate the Candidatus Competibacter associated with glycogen-accumulating organisms and guarantee high efficiency phosphorus uptake of phosphorus accumulating organisms in the system with acetate as carbon source.
文摘Deflection is a significant indicator of bridge’s strength and its whole stiffness, so the research on deflection measurement is an important aspect of bridge health monitoring. There have existed many measurement methods of bridge deflection so far, while inclination method is gradually catching more and more attention for its fair obviously comprehensive advantages. However, the inclination method at present focuses on measuring the rotation of bridge’s section at testing point, that is, the tangent angle of deflection curve. With the tangent angle, the deflection curve can be determined by the methods of curve fitting or (and) integration or conjugate beam. The methods mentioned above, are not only complicated in calculation, but also bad in accuracy. The deflection measurement method proposed by this paper is based on measuring the inclination of two points initiatively in horizontal line, that is, the secant angle of the deflection curve, and on the simple triangle function operation. The proposed method is simple in theory, but good in accuracy for either static or dynamic load. The numerical simulation suggests that the error of the proposed method is less than 1%.
文摘Expansive soils can pose tough issues to civil engineering applications. In a typical year, expansive soils can cause a greater financial loss than earthquakes, floods, hurricanes and tornadoes combined. Various means have been studied to tackle problems associated with expansive soils. The majority of the methods are based on treatment of the soils. While the methods may be effective in some cases, their limitations are also obvious: The treatment normally involves complex processes and may not be eco-friendly in the long run. In many cases, the effectiveness of the treatment is uncertain. A retaining system that maintains a constant lateral pressure is proposed, which consists of three components: the retaining sheet, the slip-force device and the bracing column. The retaining sheet bears the pressure exerted by expansive backfills and is not embedded into the soils. Placed between the retaining sheet and bracing column, the slip-force device permits displacement of the retaining sheet but keeps the force on the sheet and the bracing column constant. The governing equation of the motion of the piston in the slip-force device is derived and a numerical simulation of a practical case is conducted based on the derived governing equation. Numerical results show that as the expansive soil swell, the spring force will increase and the piston will move accordingly. When the pressure of the oil in chamber reach<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">es</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> the open threshold of the unidirectional relief valve, the valve will open and the spring force and the oil pressure in the chamber will keep constant. The results also show that some parameters, such as damping ratio, have very slight influences on the device behavior, say 2 × 10</span><sup><span style="font-family:Verdana;">-6</span></sup><span style="font-family:Verdana;"> or even 4.8 × 10</span><sup><span style="font-family:Verdana;">-9</span></sup><span style="font-family:Verdana;">. Theoretical and numerical studies prove the effectiveness of the proposed retaining system.</span></span></span></span>