期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
P-and SV-wave dispersion and attenuation in saturated microcracked porous rock with aligned penny-shaped fractures
1
作者 Sheng-Qing Li Wen-Hao Wang +2 位作者 Yuan-Da Su Jun-Xin Guo Xiao-Ming Tang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期143-161,共19页
P-and SV-wave dispersion and attenuation have been extensively investigated in saturated poroelastic media with aligned fractures.However,there are few existing models that incorporate the multiple wave attenuation me... P-and SV-wave dispersion and attenuation have been extensively investigated in saturated poroelastic media with aligned fractures.However,there are few existing models that incorporate the multiple wave attenuation mechanisms from the microscopic scale to the macroscopic scale.Hence,in this work,we developed a unified model to incorporate the wave attenuation mechanisms at different scales,which includes the microscopic squirt flow between the microcracks and pores,the mesoscopic wave-induced fluid flow between fractures and background(FB-WIFF),and the macroscopic Biot's global flow and elastic scattering(ES)from the fractures.Using Tang's modified Biot's theory and the mixed-boundary conditions,we derived the exact frequency-dependent solutions of the scattering problem for a single penny-shaped fracture with oblique incident P-and SV-waves.We then developed theoretical models for a set of aligned fractures and randomly oriented fractures using the Foldy approximation.The results indicated that microcrack squirt flow considerably influences the dispersion and attenuation of P-and SV-wave velocities.The coupling effects of microcrack squirt flow with the FB-WIFF and ES of fractures cause much higher velocity dispersion and attenuation for P waves than for SV waves.Randomly oriented fractures substantially reduce the attenuation caused by the FB-WIFF and ES,particularly for the ES attenuation of SV waves.Through a comparison with existing models in the limiting cases and previous experimental measurements,we validated our model. 展开更多
关键词 Aligned fractures P-and SV-wave Dispersion and attenuation Microcracked porous background FB-WIFF Elastic scattering Squirt flow
下载PDF
Seismic prompt gravity strain signals in a layered spherical Earth
2
作者 Shenjian Zhang Rongjiang Wang Xiaofei Chen 《Earthquake Science》 2023年第5期341-355,共15页
Seismic waves generated by an earthquake can produce dynamic perturbations in the Earth’s gravity field before the direct arrival of P-waves.Observations of these so-called prompt elasto-gravity signals by ground-bas... Seismic waves generated by an earthquake can produce dynamic perturbations in the Earth’s gravity field before the direct arrival of P-waves.Observations of these so-called prompt elasto-gravity signals by ground-based gravimeters and broadband seismometers have been reported for some large events,such as the 2011 M_(W)9.1 Tohoku earthquake.Recent studies have introduced prompt gravity strain signals(PGSSs)as a new type of observable seismic gravity perturbation that can be used to measure the spatial gradient of the perturbed gravity field.Theoretically,these types of signals can be recorded by indevelopment instruments termed gravity strainmeters,although no successful detection has been reported as yet.Herein,we propose an efficient approach for PGSSs based on a multilayered spherical Earth model.We compared the simulated waveforms with analytical solutions obtained from a homogeneous half-space model,which has been used in earlier studies.This comparison indicates that the effect of the Earth’s structural stratification is significant.With the help of the new simulation approach,we also demonstrated how the PGSSs depend on the magnitude of the seismic source.We further conducted synthetic tests estimating earthquake magnitude using gravity strain signals to demonstrate the potential application of this type of signal in earthquake early warning systems.These results provide essential information for future studies on the synthesis and application of earthquake-induced gravity strain signals. 展开更多
关键词 gravity strain synthetic seismogram earthquake early warning system
下载PDF
A Physics‑Based Seismic Risk Assessment of the Qujiang Fault:From Dynamic Rupture to Disaster Estimation
3
作者 Yilong Li Zijia Wang +2 位作者 Zhenguo Zhang Yuhao Gu Houyun Yu 《International Journal of Disaster Risk Science》 SCIE CSCD 2024年第1期165-177,共13页
This study achieved the construction of earthquake disaster scenarios based on physics-based methods-from fault dynamic rupture to seismic wave propagation-and then population and economic loss estimations.The physics... This study achieved the construction of earthquake disaster scenarios based on physics-based methods-from fault dynamic rupture to seismic wave propagation-and then population and economic loss estimations.The physics-based dynamic rupture and strong ground motion simulations can fully consider the three-dimensional complexity of physical parameters such as fault geometry,stress field,rock properties,and terrain.Quantitative analysis of multiple seismic disaster scenarios along the Qujiang Fault in western Yunnan Province in southwestern China based on different nucleation locations was achieved.The results indicate that the northwestern segment of the Qujiang Fault is expected to experience significantly higher levels of damage compared to the southeastern segment.Additionally,there are significant variations in human losses,even though the economic losses are similar across different scenarios.Dali Bai Autonomous Prefecture,Chuxiong Yi Autonomous Prefecture,Yuxi City,Honghe Hani and Yi Autonomous Prefecture,and Wenshan Zhuang and Miao Autonomous Prefecture were identified as at medium to high seismic risks,with Yuxi and Honghe being particularly vulnerable.Implementing targeted earthquake prevention measures in Yuxi and Honghe will significantly mitigate the potential risks posed by the Qujiang Fault.Notably,although the fault is within Yuxi,Honghe is likely to suffer the most severe damage.These findings emphasize the importance of considering rupture directivity and its influence on ground motion distribution when assessing seismic risk. 展开更多
关键词 Earthquake disaster loss estimation Physics-based earthquake scenario simulation Qujiang Fault Rupture directivity Seismic risk assessment
原文传递
Rapid estimation of disaster losses for the M6.8 Luding earthquake on September 5,2022 被引量:1
4
作者 Wenqiang WANG Yilong LI +4 位作者 Zhenguo ZHANG Danhua XIN Zhongqiu HE Wei ZHANG Xiaofei CHEN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第6期1334-1344,共11页
An M6.8 earthquake occurred in Luding,Sichuan Province,China,on September 5,2022.Since towns and villages in the earthquake-stricken area are densely populated,the earthquake caused severe fatalities and economic loss... An M6.8 earthquake occurred in Luding,Sichuan Province,China,on September 5,2022.Since towns and villages in the earthquake-stricken area are densely populated,the earthquake caused severe fatalities and economic losses.Rapid estimation of earthquake intensity and disaster losses is significantly important for post-earthquake emergency rescue,scientific anti-seismic deployment,and the reduction of casualties and economic losses.Therefore,we make a preliminary rapid estimation of the earthquake intensity and disaster losses in the aftermath of the Luding earthquake.The seismic intensity represents the distribution of earthquake disasters and the degree of ground damage and can be directly converted from the peak ground velocity(PGV)map.To obtain a reliable PGV distribution map of this earthquake,we combined the finite-fault model constrained by seismic observations,with the complex three-dimensional(3D)geological environment and topographical features to perform strong ground motion simulation.Then,we compared the consistency between the simulated ground motion waveforms and observations,indicating the plausibility and reliability of simulations.In addition,we transformed the PGV simulation results into intensity and obtained a physics-based map of the intensity distribution of the Luding earthquake.The maximum simulated intensity of this earthquake is IX,which is consistent with the maximum intensity determined from the postearthquake field survey.Based on the simulated seismic intensity map of the Luding earthquake and the earthquake disaster loss estimation model,we rapidly estimated the death and economic losses caused by this earthquake.The estimated results show that the death toll caused by this earthquake is probably 50-300,with a mathematic expectation of 89.Thus the government should launch a Level II earthquake emergency response plan.The economic losses are likely to be 10-100 billion RMB,with a mathematical expectation of 23.205 billion RMB.Such seismic intensity simulations and rapid estimation of disaster losses are expected to provide a preliminary scientific reference for governments to carry out the targeted deployment of emergency rescue and post-disaster reconstruction. 展开更多
关键词 Luding earthquake Ground motion simulation Seismic intensity Estimation of disaster losses FATALITY Economic losses
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部