期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Acetyl coenzyme A carboxylase modulates lipogenesis and sugar homeostasis in Blattella germanica
1
作者 Xiaojin Pei Tiantian Bai +4 位作者 Yuan Luo Zhanfeng Zhang Sheng Li Yongliang Fan Tong-Xian Liu 《Insect Science》 SCIE CAS CSCD 2024年第2期387-404,共18页
Lipid and sugar homeostasis is critical for insect development and survival.In this study,we characterized an acetyl coenzyme A carboxylase gene in Blattella germanica(BgACC)that is involved in both lipogenesis and su... Lipid and sugar homeostasis is critical for insect development and survival.In this study,we characterized an acetyl coenzyme A carboxylase gene in Blattella germanica(BgACC)that is involved in both lipogenesis and sugar homeostasis.We found that BgACC was dominantly expressed in the fat body and integument,and was significantly upregulated after molting.Knockdown of BgACC in 5th-instar nymphs did not affect their normal molting to the next nymphal stage,but it caused a lethal phenotype during adult emergence.BgACC-RNA interference(RNAi)significantly downregulated total free fatty acid(FFA)and triacylglycerol(TAG)levels,and also caused a significant decrease of cuticular hydrocarbons(CHCs).Repression of BgACC in adult females affected the development of oocytes and resulted in sterile females,but BgACC-RNAi did not affect the reproductive ability of males.Interestingly,knockdown of BgACC also changed the expression of insulin-like peptide genes(BglLPs),which mimicked a physiological state of high sugar uptake.In addition,BgACC was upregulated when B.germanica were fed on a high sucrose diet,and repression of BgACC upregulated the expression of the glycogen synthase gene(BgGlyS).Moreover,BgACC-RNAi increased the circulating sugar levels and glycogen storage,and a longevity assay suggested that BgACC was important for the survival of B.germanica under conditions of high sucrose uptake.Our results confirm that BgACC is involved in multiple lipid biogenesis and sugar homeostasis processes,which further modulates insect reproduction and sugar tolerance.This study benefits our understanding of the crosstalk between lipid and sugar metabolism. 展开更多
关键词 acetyl-CoA carboxylase German cockroach lipid biosynthesis sugar tolerance
原文传递
Two putative fatty acid synthetic genes of BgFas3 and BgElo1 are responsible for respiratory waterproofing in Blattella germanica 被引量:1
2
作者 Xiao-Jin Pei Tian-Tian Bai +4 位作者 Zhan-Feng Zhang Nan Chen Sheng Li Yong-Liang Fan Tong-Xian Liu 《Insect Science》 SCIE CAS CSCD 2022年第1期33-50,共18页
Water retention is critical for physiological homeostasis and survival in terrestrial insects. While deposition of hydrocarbons on insect cuticles as a key measure for water conservation has been extensively investiga... Water retention is critical for physiological homeostasis and survival in terrestrial insects. While deposition of hydrocarbons on insect cuticles as a key measure for water conservation has been extensively investigated, we know little about other mechanisms for preventing water loss in insects. Here, we report two fatty acid synthetic genes that are independent of hydrocarbon production but crucial for water retention in the German cockroach Blattella germanica (L.). First, an integument enriched fatty acid elongase gene (BgElo1) was identified as a critical gene for desiccation resistance in B. germanica;however, knockdown of BgElo1 surprisingly failed to cause a decline in cuticular lipids. In addition, RNA interference (RNAi)-knockdown of an upstream fatty acid synthase gene (BgFas3) showed a similar phenotype, and transmission electron microscopy analysis revealed that BgFas3- or BgElo1-RNAi did not affect cuticle architecture. Bodyweight loss test showed that repression of BgFas3 and BgElo1 significantly increased the weight loss rate, but the difference disappeared when the respiration was closed by freeze killing the cockroaches. A water immersion test was performed, and we found that BgFas3- and BgElo1-RNAi made it difficult for cockroaches to recover from drowning, which was supported by the upregulation of hypoxia-related genes after a 10-h recovery from drowning. Moreover, a dyeing assay with water-soluble Eosin Y showed that this was caused by the entry of water into the respiratory system. Our research suggests that BgFas3 and BgElo1 are required for both inward and outward waterproofing of the respiratory system. This study benefits the understanding of water retention mechanisms in insects. 展开更多
关键词 ELONGASE fatty acid synthase German cockroach respiratory water loss very long chain fatty acid water retention
原文传递
Melanin synthesis genes BgTH and BgDdc affect body color and cuticle permeability in Blattella germanica
3
作者 Tian-Tian Bai Xiao-Jin Pei +2 位作者 Tong-Xian Liu Yong-Liang Fan Shi-Ze Zhang 《Insect Science》 SCIE CAS CSCD 2022年第6期1552-1568,共17页
Melanin is involved in cuticle pigmentation and sclerotization of insects,which is critical for maintaining structural integrity and functional completeness of insect cuti-cle.The 2 key enzymes of tyrosine hydroxylase... Melanin is involved in cuticle pigmentation and sclerotization of insects,which is critical for maintaining structural integrity and functional completeness of insect cuti-cle.The 2 key enzymes of tyrosine hydroxylase(TH)and dopa decarboxylase(DDC)predicted in melanin biosynthesis are usually conserved in insects.However,it is unclear whether their function is related to epidermal permeability.In this study,we identified and cloned the gene sequences of BgTH and BgDdc from Blattella germanica,and revealed that they both showed a high expression at the molting,and BgTH was abundant in the head and integument while BgDdc was expressed highest in the fat body.Using RNA in-terference(RNAi),we found that knockdown of BgTH caused molting obstacles in some cockroaches,with the survivors showing pale color and softer integuments,while knock-down of BgDdc was viable and generated an abnormal light brown body color.Desiccation assay showed that the dsBgTH-injected adults died earlier than control groups under a dry atmosphere,but dsBgDdc-injected cockroaches did not.In contrast,when dsRNA-treated cockroaches were reared under a high humidity condition,almost no cockroaches died in all treatments.Furthermore,with eosin Y staining assay,we found that BgTH-RNAi resulted in a higher cuticular permeability,and BgDdc-RNAi also caused slight dye pen-etration.These results demonstrate that BgTH and BgDdc function in body pigmentation and affect the waterproofing ability of the cuticle,and the reduction of cuticular perme-ability may be achieved through cuticle melanization. 展开更多
关键词 cuticular permeability desiccation tolerance dopa decarboxylase German cockroach PIGMENTATION tyrosine hydroxylase
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部