期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The study on the mechanical properties of PU/MF double shell self-healing microcapsules 被引量:5
1
作者 Guohao Du Jianfeng Hu +7 位作者 Jianhui Zhou Guangwu Wang Shengli Guan Hailing Liu Man Geng Chuang Lv Yaoqiang Ming Jinqing Qu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第5期1459-1473,共15页
The self-healing microcapsules can be buried in the coating to improve the anticorrosive ability.In this paper,self-healing microcapsules of polyurea(PU)/melamine resin(MF)double shell were prepared by in-situ polymer... The self-healing microcapsules can be buried in the coating to improve the anticorrosive ability.In this paper,self-healing microcapsules of polyurea(PU)/melamine resin(MF)double shell were prepared by in-situ polymerization and interfacial polymerization with isocyanate as the core material.Scanning electron microscope was used to observe the microcapsule morphology.The structures of microcapsules prepared with different chain extenders were characterized by Fourier transform infrared spectroscopy.The micromanipulation system was used to loading–holding,loading–unloading and loading to rupture individual microcapsules,so as to explore the mechanical properties of microcapsules.The Young’s modulus corresponding to microcapsules was calculated by mathematical model fitting.The self-healing properties of microcapsule coating were characterized by optical microscope.The experimental results showed that the microcapsule shell prepared under optimized conditions had a complete morphology and good mechanical properties.The microcapsule was in the elastic deformation stage under small deformation,and the plastic deformation stage under large deformation.The Young’s modulus range of microcapsules was 9.29–14.51 MPa,and the corresponding Young’s modulus could be prepared by adjusting the process.The surface crack of the coating containing microcapsule could heal itself after48 h in a humid environment. 展开更多
关键词 MICROCAPSULES SELF-HEALING Double-layered Mechanical properties Young’s modulus
下载PDF
Effect of surfactant on zeta potential and rheology behavior of methylene bis (thiocyanate) suspension concentrate 被引量:1
2
作者 Jianfeng Hu Yan Cai +5 位作者 Shan Lu Jiezhen Xu Zhongrun Yun Jianheng Huang Yuliang Wen Jinqing Qu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第5期541-546,共6页
Methylene bis(thiocyanate)(MBT) is insoluble in water, so suspension concentrate(SC) of MBT is extremely relied on surfactants. In this paper, SC of MBT was prepared with wet-grinding technology, and the effect of sur... Methylene bis(thiocyanate)(MBT) is insoluble in water, so suspension concentrate(SC) of MBT is extremely relied on surfactants. In this paper, SC of MBT was prepared with wet-grinding technology, and the effect of surfactants,such as Morwet D425(D425) and Morwet EFW(EFW)(two kinds of dispersant), on the Zeta potential and rheology behavior of MBT SC were investigated. The results showed that the Zeta potential absolute value of MBT SC increased with the increasing content of D425, and it decreased with the increasing content of EFW at acidic solution(pH = 4.5). In the combination system of D425 and EFW, Zeta potential of MBT SC decreased first and then increased with the increasing content of EFW. The relationship between shear rate(γ) and viscosity(η) was studied according to Herschel–Bulkley model: η = η0+ k/γ, and the relationship between shear rate(γ) and shear force(τ) was investigated according to:τ = τ0+Kγ~n. It was revealed that the mixed fluid belonged to Yield Pseudoplastic Fluid. 展开更多
关键词 ZETA电位 表面活性剂 硫氰酸盐 流变性能 悬浮液 亚甲基 ZETA电位 MBT
下载PDF
Performance analysis and optimization of free cooling strategies for a liquid-cooled data center
3
作者 Weinan Zhou Qin Sun +4 位作者 Weimin Luo Wei Xiao Pengfei Cui Wei Wu Kaijun Dong 《Building Simulation》 SCIE EI CSCD 2023年第8期1317-1330,共14页
The increasing power density of IT electronics and the enormous energy consumption of data centers lead to the urgent demand for efficient cooling technology.Due to its efficiency and safety,liquid-cooled heat sink te... The increasing power density of IT electronics and the enormous energy consumption of data centers lead to the urgent demand for efficient cooling technology.Due to its efficiency and safety,liquid-cooled heat sink technology may gradually replace air-cooled technology over time.With the ambient or higher water supply temperature,the liquid-cooled technology shortens the operating time of the chiller and improves its coefficient of performance,while the pump power consumption may increase for satisfying the constant cooling capacity.Therefore,it is significant to study the optimal water supply temperature to achieve energy-efficient operation of data centers.A virtual 30.1 kW data center is considered as the case,the liquid-cooled system is constructed with a combination of innovative manifold microchannel heat sink with oblique fins and indirect evaporative cooling technology to minimize energy consumption.A hybrid thermal management model integrating the heat dissipation model and the power consumption model is established by TRNSYS and FLUENT software.To the highest chip-safe operating temperature premise,the energy performance is analyzed under various water supply temperatures in Guangzhou.The result shows that only 21.5-hour mechanical cooling is needed with the 30℃server inlet temperature throughout the year.And the minimized power consumption occurs with the constant 29℃server inlet temperature.Moreover,the temperature adaptive control strategy(TACS)is adopted to test the cooling system power consumption under different regulation frequencies,and the by-week TACS can achieve another 11.5%energy saving than the minimum power consumption of the constant temperature control strategy. 展开更多
关键词 data center liquid cooling system manifold microchannel heat sink indirect evaporative cooling control strategy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部