期刊文献+
共找到194篇文章
< 1 2 10 >
每页显示 20 50 100
Geological reservoir and resource potential(10^(13)m^(3))of gas hydrates in the South China Sea
1
作者 Pi-bo Su Wei Wei +5 位作者 Yun-bao Sun Yao-yao Lü Huai Cheng Wei-feng Han Wei Zhang Jin-qiang Liang 《China Geology》 CAS CSCD 2024年第3期422-444,共23页
A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this ... A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this study,this study analyzed the applicability of resource evaluation methods,including the volumetric,genesis,and analogy methods,and estimated NGHs resource potential in the South China Sea by using scientific resource evaluation methods based on the factors controlling the geological accumulation and the reservoir characteristics of NGHs.Furthermore,this study compared the evaluation results of NGHs resource evaluations in representative worldwise sea areas via rational analysis.The results of this study are as follows:(1)The gas hydrate accumulation in the South China Sea is characterized by multiple sources of gas supply,multi-channel migration,and extensive accumulation,which are significantly different from those of oil and gas and other unconventional resources.(2)The evaluation of gas hydrate resources in the South China Sea is a highly targeted,stratified,and multidisciplinary evaluation of geological resources under the framework of a multi-type gas hydrate resource evaluation system and focuses on the comprehensive utilization of multi-source heterogeneous data.(3)Global NGHs resources is n×10^(15)m^(3),while the NGHs resources in the South China Sea are estimated to be 10^(13)m^(3),which is comparable to the abundance of typical marine NGHs deposits in other parts of the world.In the South China Sea,the NGHs resources have a broad prospect and provide a substantial resource base for production tests and industrialization of NGHs. 展开更多
关键词 Reservoir characteristics Natural gas hydrates Gas migration Resource potential Resource evaluation methods Hierarchical evaluation system Volumetric method South China Sea Clean energy exploration engineering
下载PDF
Innovative understanding in the geological research of China seas and adjacent regions-based on the 1∶1000000 marine regional geological survey
2
作者 Xian-yao Shi Wen-chao Lü +5 位作者 Yong Zhang Xue-jie Li Yong-jian Yao Lu-ning Shang Zhong-lei Wang Chu-peng Yang 《China Geology》 CAS 2022年第4期774-776,共3页
1.Objectives The China sea and their adjacent regions are the key areas for establishing the“21st Century Maritime Silk Road”and building a community of marine destiny and promoting sustainable development(Shang LN ... 1.Objectives The China sea and their adjacent regions are the key areas for establishing the“21st Century Maritime Silk Road”and building a community of marine destiny and promoting sustainable development(Shang LN et al.,2021).Marine regional geological surveys are systematic surveys involving geology,geophysics,geochemistry,remote sensing,and marine sedimentary dynamic environments on specific scales. 展开更多
关键词 SURVEY GEOCHEMISTRY GEOLOGY
下载PDF
Deep-large faults controlling on the distribution of the venting gas hydrate system in the middle of the Qiongdongnan Basin, South China Sea
3
作者 Jin-feng Ren Hai-jun Qiu +6 位作者 Zeng-gui Kuang Ting-wei Li Yu-lin He Meng-jie Xu Xiao-xue Wang Hong-fei Lai Jin Liang 《China Geology》 CAS CSCD 2024年第1期36-50,共15页
Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra... Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates. 展开更多
关键词 Venting gas hydrates Deep-large faults Gas chimney Gas-escape pipes High-resolution 3D seismic Logging while drilling Qiongdongnan Basin South China Sea
下载PDF
Morphological and Sulfur-Isotopic Characteristics of Pyrites in the Deep Sediments from Xisha Trough,South China Sea
4
作者 CHANG Jingyi LIU Yujia +4 位作者 LU Hailong LU Jing’an SU Xin YE Jianliang XIE Wenwei 《Journal of Ocean University of China》 CAS CSCD 2024年第1期138-148,共11页
Pyrite is one of the common authigenic minerals in marine sediments.Previous studies have shown that the morphological and isotopic characteristics of pyrite are closely related to the geochemical environment where it... Pyrite is one of the common authigenic minerals in marine sediments.Previous studies have shown that the morphological and isotopic characteristics of pyrite are closely related to the geochemical environment where it is formed.To better understand the for-mation mechanism of authigenic pyrite,we analyzed the isotopic composition,morphology,and distribution of pyrite in the sediment at 500m below the seafloor from Xisha Trough,South China Sea.Mineral morphologies were observed by scanning electron micros-copy and Raman spectrography.X-Ray computed tomography was applied to measure the particle size of pyrite.The size of pyrite crystals in the matrix sediment mainly ranged between 25 and 65µm(av.ca.40µm),although crystals were larger(av.ca.50μm)in the veins.The pyrites had a fine-grained truncated octahedral shape with occasionally well-developed growth steps,which implies the low growth rate and weak anaerobic oxidation of methane-sulfate reduction when pyrite was formed.Theδ^(34)S values of pyrites ranged from+20.8‰Vienna-defined Canyon Diablo Troilite(V-CDT)to+33.2‰V-CDT and from+44.8‰V-CDT to+48.9‰,which suggest two growth stages.In the first stage,with the continuous low methane flux,the pyrite possibly formed in an environment with good access to seawater.In the second stage,the pyrites mainly developed in sediment fractures and appeared in veins,probably due to the limited availability of sulfate.The less exposure of pyrite to the environment in the second stage was probably caused by sediment accumulation or perturbation.In this study,an episodic pyritization process was identified,and the paleoenvironment was reconstructed for the sediment investigated. 展开更多
关键词 PYRITE sulfur isotope AOM methane flux Xisha Trough South China Sea
下载PDF
Jet Characteristics and Optimization of a Cavitation Nozzle for Hydraulic Fracturing Applications
5
作者 Yu Gao Zhenqiang Xu Kaixiang Shen 《Fluid Dynamics & Materials Processing》 EI 2024年第1期179-192,共14页
Hydraulic jetting is a form of fracturing that involves using a high-pressure jet of water to create fractures in the reservoir rock with a nozzle serving as the central component of the hydraulic sandblasting perfora... Hydraulic jetting is a form of fracturing that involves using a high-pressure jet of water to create fractures in the reservoir rock with a nozzle serving as the central component of the hydraulic sandblasting perforation tool.In this study,the flow behavior of the nozzle is simulated numerically in the framework of a SST k-ωturbulence model.The results show that the nozzle structure can significantly influence the jet performance and related cavitation effect.Through orthogonal experiments,the nozzle geometric parameters are optimized,and the following configuration is found accordingly:contraction angle 20°,contraction segment length 6 mm,cylindrical segment diameter 6 mm,cylindrical segment length 12 mm,spread segment length 10 mm,and spread angle 55°. 展开更多
关键词 Cavitation jet angle nozzle hydraulic characteristics nozzle parameters
下载PDF
Gas Sources of Natural Gas Hydrates in the Shenhu Drilling Area, South China Sea: Geochemical Evidence and Geological Analysis 被引量:13
6
作者 ZHU Youhai HUANG Xia +1 位作者 FU Shaoying SU Pibo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第3期767-776,共10页
The Shenhu gas hydrate drilling area is located in the central Baiyun sag, Zhu I! depression, Pearl River Mouth basin, northern South China Sea. The gas compositions contained in the hydrate-bearing zones is dominated... The Shenhu gas hydrate drilling area is located in the central Baiyun sag, Zhu I! depression, Pearl River Mouth basin, northern South China Sea. The gas compositions contained in the hydrate-bearing zones is dominated by methane with content up to 99.89% and 99.91%. The carbon isotope of the methane (δ^13C1) are -56.7%0. and -60.9%0, and its hydrogen isotope (δD) are -199%0 and -180%0, respectively, indicating the methane from the microbial reduction of CO2. Based on the data of measured seafloor temperature and geothermal gradient, the gas formed hydrate reservoirs are from depths 24-1699 m below the seafloor, and main gas-generation zone is present at the depth interval of 416-1165 m. Gas-bearing zones include the Hanjiang Formation, Yuehai Formation, Wanshan Formation and Quaternary sediments. We infer that the microbial gas migrated laterally or vertically along faults (especially interlayer faults), slump structures, small-scale diapiric structures, regional sand beds and sedimentary boundaries to the hydrate stability zone, and formed natural gas hydrates in the upper Yuehai Formation and lower Wanshan Formation, probably with contribution of a little thermogenic gas from the deep sedments during this process. 展开更多
关键词 natural gas hydrate METHANE microbial gas gas source MIGRATION South China Sea
下载PDF
Multi-factor sensitivity analysis on the stability of submarine hydrate-bearing slope 被引量:12
7
作者 Liang Kong Zhen-fei Zhang +3 位作者 Qing-meng Yuan Qian-yong Liang Yao-hong Shi Jin-qing Lin 《China Geology》 2018年第3期367-373,共7页
There are many factors affecting the instability of the submarine hydrate-bearing slope (SHBS),and the interaction with hydrate is very complicated.In this paper,the mechanical mechanism of the static liquefaction and... There are many factors affecting the instability of the submarine hydrate-bearing slope (SHBS),and the interaction with hydrate is very complicated.In this paper,the mechanical mechanism of the static liquefaction and instability of submarine slope caused by the dissociation of natural gas hydrate (NGH) resulting in the rapid increase of pore pressure of gas hydrate-bearing sediments (GHBS) and the decrease of effective stress are analyzed based on the time series and type of SHBS.Then,taking the typical submarine slope in the northern South China Sea as an example,four important factors affecting the stability of SHBS are selected,such as the degree of hydrate dissociation,the depth of hydrate burial,the thickness of hydrate,and the depth of seawater.According to the principle of orthogonal method,25 orthogonal test schemes with 4 factors and 5 levels are designed and the safety factors of submarine slope stability of each scheme are calculated by using the strength reduction finite element method.By means of the orthogonal design range analysis and the variance analysis,sensitivity of influential factors on stability of SHBS are obtained.The results show that the degree of hydrate dissociation is the most sensitive,followed by hydrate burial depth,the thickness of hydrate and the depth of seawater.Finally,the concept of gas hydrate critical burial depth is put forward according to the influence law of gas hydrate burial depth,and the numerical simulation for specific submarine slope is carried out,which indicates the existence of critical burial depth. 展开更多
关键词 SUBMARINE SLOPE Gas HYDRATE Strength reduction finite element method Instability mechanism Sensitivity analysis Critical BURIAL depth
下载PDF
Distribution Characteristics of Cobalt-rich Ferromanganese Crust Resources on Submarine Seamounts in the Western Pacific 被引量:6
8
作者 ZHANG Fuyuan ZHANG Weiyan +4 位作者 ZHU Kechao GAO Shuitu ZHANG Haisheng ZHANG Xiaoyu ZHU Benduo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第4期796-803,共8页
Based on the survey data of five submarine seamount provinces (chains) in the Western Pacific, the distribution characteristics of cobalt-rich ferromanganese crust resources have been researched in this paper by usi... Based on the survey data of five submarine seamount provinces (chains) in the Western Pacific, the distribution characteristics of cobalt-rich ferromanganese crust resources have been researched in this paper by using the relative reference data and applying the theories of hotspot and seafloor spreading. The main research results obtained are as follows: The Co-rich crust thickness in the study area is gradually increasing from east to west and from south to north having a negative correlation (r = -0.59) with longitude and a positive correlation (r = 0.48) with latitude. The crust thickness varying along longitude and latitude is influenced by the hotspot and seafloor spreading. The oceanic crusts and seamounts in the northwest part of the study area are older, and the crust resources are superior to those in the southeast part. In the depth of 〈1500 m, 1500-2000 m, 2000-2500 m in the study area, the cobalt crust thickness is respectively 5.45 cm, 4.34 cm and 3.55 cm, and in the depth of 2500-3000 m and 3000-3500 m, it drops respectively to 2.84 cm and 3.37 cm. The Co-rich crust resources are mainly concentrated in the seamount summit margins and the upper flanks in the depth of 〈2500 m. There is a strong negative correlation (r = -0.67) between the cobalt crust abundance and the slope of the seamount, 75 kg/m^2 and 50 kg/mz at the slopes of 0°-20° and 20°-34° respectively. Cobalt crusts are mainly distributed in the parts whose slopes are less than 20°. It is consistent with the fractal result that the slope threshold of cobalt crust distribution is 19°, and slopes over 20° are not conducive to the crust growth. The cobalt crusts of high grade are mainly enriched in the region within 150°E-140°W and 30°S-30°N in the Pacific, where there are about 587 seamounts at the depth of 3500- 6000 m and over 30 Ma of the oceanic crusts. The perspective area rich in cobalt crust resources is about 41×104 km^2 and the resource quantity is approximately 27 billion tons. 展开更多
关键词 Western Pacific SEAMOUNTS Co-rich crusts RESOURCES distribution characteristics
下载PDF
Submarine Landslides on the North Continental Slope of the South China Sea 被引量:13
9
作者 WANG Weiwei WANG Dawei +4 位作者 WU Shiguo VOKER David ZENG Hongliu CAI Guanqiang LI Qingping 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第1期83-100,共18页
Recent and paleo-submarine landslides are widely distributed within strata in deep-water areas along continental slopes, uplifts, and carbonate platforms on the north continental margin of the South China Sea(SCS). In... Recent and paleo-submarine landslides are widely distributed within strata in deep-water areas along continental slopes, uplifts, and carbonate platforms on the north continental margin of the South China Sea(SCS). In this paper, high-resolution 3D seismic data and multibeam data based on seismic sedimentology and geomorphology are employed to assist in identifying submarine landslides. In addition, deposition models are proposed that are based on specific geological structures and features, and which illustrate the local stress field over entire submarine landslides in deep-water areas of the SCS. The SCS is one of the largest fluvial sediment sinks in enclosed or semi-enclosed marginal seas worldwide. It therefore provides a set of preconditions for the formation of submarine landslides, including rapid sediment accumulation, formation of gas hydrates, and fluid overpressure. A new concept involving temporal and spatial analyses is tested to construct a relationship between submarine landslides and different time scale trigger mechanisms, and three mechanisms are discussed in the context of spatial scale and temporal frequency: evolution of slope gradient and overpressure, global environmental changes, and tectonic events. Submarine landslides that are triggered by tectonic events are the largest but occur less frequently, while submarine landslides triggered by the combination of slope gradient and overpressure evolution are the smallest but most frequently occurring events. In summary, analysis shows that the formation of submarine landslides is a complex process involving the operation of different factors on various time scales. 展开更多
关键词 SOUTH China Sea SUBMARINE LANDSLIDES SEISMIC identification TRIGGERING mechanism
下载PDF
Stability analysis of submarine slopes in the area of the test production of gas hydrate in the South China Sea 被引量:8
10
作者 Yao-hong Shi Qian-yong Liang +3 位作者 Jiang-pin Yang Qing-meng Yuan Xue-min Wu Liang Kong 《China Geology》 2019年第3期276-286,共11页
In this paper, the mechanical properties of gas hydrate-bearing sediments (GHBS) were summarized and the instability mechanism of submarine hydrate-bearing slope (SHBS) was analyzed under the background of the test pr... In this paper, the mechanical properties of gas hydrate-bearing sediments (GHBS) were summarized and the instability mechanism of submarine hydrate-bearing slope (SHBS) was analyzed under the background of the test production of gas hydrate in the northern part of the South China Sea. The strength reduction finite element method (SRFEM) was introduced to the stability analysis of submarine slopes for the safety of the test production. Two schemes were designed to determine the physical and mechanical parameters of four target wells. Through the division of the hydrate dissociation region and the design of four working conditions, the range and degree of hydrate dissociation at different stages during the test production were simulated. Based on the software ABAQUS, 37 FEM models of SHBS were set up to analyze and assess the stability of the submarine slopes in the area of the test production. Necessary information such as safety factors, deformation, and displacement were obtained at different stages and under different working conditions. According to the calculation results, the submarine slope area is stable before the test production, and the safety factors almost remains the same during and after the test production. All these indicate that the test production has no obvious influence on the area of the test production and the submarine slopes in the area are stable during and after the test production. 展开更多
关键词 GAS HYDRATE test PRODUCTION Strength reduction finite element method SUBMARINE slope Stability GAS HYDRATE exploration engineering South China Sea China
下载PDF
Mesozoic Deformation and Its Geological Significance in the Southern Margin of the South China Sea 被引量:3
11
作者 ZHU Rongwei LIU Hailing +1 位作者 YAO Yongjian WANG Yin 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第4期835-845,共11页
The pre-Eocene history of the region around the present South China Sea is not well known. New multi-channel seismic profiles provide valuable insights into the probable Mesozoic history of this region. Detailed struc... The pre-Eocene history of the region around the present South China Sea is not well known. New multi-channel seismic profiles provide valuable insights into the probable Mesozoic history of this region. Detailed structural and stratigraphic interpretations of the multi-channel seismic profiles, calibrated with relevant drilling and dredging data, show major Mesozoic structural features. A structural restoration was done to remove the Cenozoic tectonic influence and calculate the Mesozoic tectonic compression ratios. The results indicate that two groups of compressive stress with diametrically opposite orientations, S(S)E– N(N)W and N(N)W–S(S)E, were active during the Mesozoic. The compression ratio values gradually decrease from north to south and from west to east in each stress orientation. The phenomena may be related to the opening of the proto-South China Sea(then located in south of the Nansha block) and the rate at which the Nansha block drifted northward in the late Jurassic to late Cretaceous. The Nansha block drifted northward until it collided and sutured with the southern China margin. The opening of the present South China Sea may be related to this suture zone, which was a tectonic zone of weakness. 展开更多
关键词 southern CONTINENTAL margin of the SOUTH China SEA MESOZOIC DEFORMATION structure structural restoration proto-South China SEA
下载PDF
Noble Gas Isotopic Compositions of Cobalt-rich Ferromanganese Crusts from the Western Pacific Ocean and Their Geological Implications 被引量:5
12
作者 SUN Xiaoming XUE Ting +4 位作者 HE Gaowen YE Xianren ZHANG Mei LU Hongfeng WANG Shengwei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第1期90-98,共9页
Noble gas isotopic compositions of various layers in three-layered (outer, porous and compact layers) cobalt-rich ferromanganese crusts and their basaltic and phosphorite substrates from the western Pacific Ocean we... Noble gas isotopic compositions of various layers in three-layered (outer, porous and compact layers) cobalt-rich ferromanganese crusts and their basaltic and phosphorite substrates from the western Pacific Ocean were analyzed by using a high vacuum gas mass spectrum. The analytical results show that the noble gases in the Co-rich crusts have derived mainly from the ambient seawater, extraterrestrial grains such as interplanetary dust particles (IDPs) and wind-borne continental dust grains, and locally formation water in the submarine sediments, but different noble gases have different sources. He in the crusts derives predominantly from the extraterrestrial grains, with a negligible amount of radiogenic He from the eolian dust grains. Ar is sourced mainly from the dissolved air in the seawater and insignificantly from radiogenic Ar in the eolian continental dust grains or the formation water. Xe and Ne derive mainly from the seawater, with minor amounts of extraterrestrial Xe and Ne in the IDPs. Compared with the porous and outer layers, the compact layer has a relatively high 4He content and lower 3He/4He ratios, suggesting that marine phosphatization might have greatly modified the noble gas isotopic compositions of the crusts. Besides, the 3He/4He values of the basaltic substrates of the cobalt-rich crusts are very low and their R/R. ratios are mostly 〈0.1 R., which are similar to that of phosphorite substrates (0.087 R.), but much lower than that of fresh submarine MORB (8.75±14 Ra) or seamount basalts (3-43 Ra), implying that the basaltic substrates have suffered strong water/rock interaction and reacted with radiogenic ^4He and P-rich upwelling marine currents during phosphatization. The trace elements released in the basalt/seawater interaction might favor the growth of cobalt-rich crusts. The relatively low ^3He/^4He values in the seamount basalts may be used as an important exploration criterion for the cobalt-rich ferromanganese crusts. 展开更多
关键词 noble gas isotopic composition interplanetary dust particles (IDPs) phosphatization cobalt-rich ferromanganese crusts western Pacific Ocean
下载PDF
Assessment of acoustic backscatter intensity surveying on deep-sea ferromanganese crust: Constraints from Weijia Guyot, western Pacific Ocean 被引量:3
13
作者 Hui-qiang Yao Yong-gang Liu +5 位作者 Yong Yang Jin-feng Ma Huo-Dai Zhang Jiang-bo Ren Xi-guang Deng Gao-wen He 《China Geology》 2021年第2期288-298,共11页
Near-bottom observation data from the manned deep submersible Jiaolong with high-precision underwater positioning data from Weijia Guyot,Magellan Seamounts in the Western Pacific Ocean are reported.Three substrate typ... Near-bottom observation data from the manned deep submersible Jiaolong with high-precision underwater positioning data from Weijia Guyot,Magellan Seamounts in the Western Pacific Ocean are reported.Three substrate types were identified:Sediment,ferromanganese crust,and ferromanganese crust with a thin cover of sediment.The ferromanganese crusts show clear zoning and their continuity is usually disturbed by sediments on areas of the mountainside with relatively gentle slope gradients.The identified substrate spatial distributions correspond to acoustic backscatter intensity data,with regions of high intensity always including crust development and regions of low intensity always having sediment.Therefore,acoustic backscatter intensity surveying appears useful in the delineation and evaluation of crust resources,although further more work is needed to develop a practicable methodology. 展开更多
关键词 Ferromanganese crust SEAMOUNT Acoustic backscatter intensity Manned deep submersible Jiaolong Resource exploration and assessment Magellan Seamounts Marine geological survey engineering Western Pacific Ocean
下载PDF
Coupled carbon and sulfur isotope behaviors and other geochemical perspectives into marine methane seepage 被引量:2
14
作者 LIU Lihua FU Shaoying +2 位作者 ZHANG Mei GUAN Hongxiang WU Nengyou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第6期12-22,共11页
Methane seepage is the signal of the deep hydrocarbon reservoir. The determination of seepage is significant to the exploration of petroleum, gas and gas hydrate. The seepage habits microbial and macrofaunal life whic... Methane seepage is the signal of the deep hydrocarbon reservoir. The determination of seepage is significant to the exploration of petroleum, gas and gas hydrate. The seepage habits microbial and macrofaunal life which is fueled by the hydrocarbons, the metabolic byproducts facilitate the precipitation of authigenic minerals. The study of methane seepage is also important to understand the oceanographic condition and local ecosystem. The seepage could be active or quiescent at different times. The geophysical surveys and the geochemical determinations reveal the existence of seepage. Among these methods, only geochemical determination could expose message of the dormant seepages. The active seepage demonstrates high porewater methane concentration with rapid SO42- depleted, low HaS and dissolved inorganic carbon (DIC), higher rates of sulfate reduction (SR) and anaerobic oxidation of methane (AOM). The quiescent seepage typically develops authigenic carbonates with specific biomarkers, with extremely depleted 13C in gas, DIC and carbonates and with enriched 34S sulfate and depleted 34S pyrite. The origin of methane, minerals precipitation, the scenario of seepage and the possible method of immigration could be determined by the integration of solutes concentration, mineral composition and isotopic fractionation of carbon, sulfur. Numerical models with the integrated results provide useful insight into the nature and intensity of methane seepage occurring in the sediment and paleo- oceanographic conditions. Unfortunately, the intensive investigation of a specific area with dormant seep is still limit. Most seepage and modeling studies are site-specific and little attempt has been made to extrapolate the results to larger scales. Further research is thus needed to foster our understanding of the methane seepage. 展开更多
关键词 marine seepage authigenic minerals carbon isotopes sulfur isotopes numerical simulation
下载PDF
Comprehensive Investigation of Submarine Slide Zones and Mass Movements at the Northern Continental Slope of South China Sea 被引量:1
15
作者 CHEN Hongjun LIANG Jin GONG Yuehua 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第1期101-117,共17页
Multi-beam bathymetry and seismic sequence surveys in the northern slope of the South China Sea reveal detailed geomorphology and seismic stratigraphy characteristics of canyons, gullies, and mass movements. Modern ca... Multi-beam bathymetry and seismic sequence surveys in the northern slope of the South China Sea reveal detailed geomorphology and seismic stratigraphy characteristics of canyons, gullies, and mass movements. Modern canyons and gullies are roughly elongated NNW–SSW with U-shaped cross sections at water depths of 400–1000 m. Mass movements include slide complexes, slide scars, and debris/turbidity flows. Slide complexes and slide scars are oriented in the NE–SW direction and cover an area of about 1790 and 926 km^2, respectively. The debris/turbidity flows developed along the lower slope. A detailed facies analysis suggests that four seismic facies exist, and the late Cenozoic stratigraphy above the acoustic basement can be roughly subdivided into three sequences separated by regional unconformities in the study area. The occurrence of gas hydrates is marked by seismic velocity anomalies, bottom-simulating reflectors, gas chimneys, and pockmarks in the study area. Seismic observations suggest that modern canyons and mass movements formed around the transition between the last glacial period and the current interglacial period. The possible existence and dissociation of gas hydrates and the regional tectonic setting may trigger instability and mass movements on the seafloor. Canyons may be the final result of gas hydrate dissociation. Our study aims to contribute new information that is applicable to engineering construction required for deep-water petroleum exploration and gas hydrate surveys along any marginal sea. 展开更多
关键词 SOUTH China Sea SUBMARINE SLIDE ZONES mass movements CONTINENTAL slope
下载PDF
Relation of Submarine Landslide to HydrateOccurrences in Baiyun Depression,South China Sea 被引量:2
16
作者 SUN Yunbao ZHANG Xiaohua +2 位作者 WU Shiguo WANG Lei YANG Shengxiong 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第1期129-138,共10页
Submarine landslides have been observed in the Baiyun Depression of the South China Sea. The occurrence of hydrates below these landslides indicates that these slope instabilities may be closely related to the massive... Submarine landslides have been observed in the Baiyun Depression of the South China Sea. The occurrence of hydrates below these landslides indicates that these slope instabilities may be closely related to the massive release of methane. In this study, we used a simple Monte-Carlo model to determine the first-order deformation pattern of a gravitationally destabilizing slope. The results show that a stress concentration occurs due to hydrate dissociation on the nearby glide surface and on top of a gas chimney structure. Upon the dissolution of the gas hydrate, slope failure occurs due to the excess pore pressure generated by the dissociation of the gas hydrates. When gas hydrates dissociate at shallow depths, the excess pore pressure generated can be greater than the total stress acting at those points, along with the forces that resist sliding. Initially, the failure occurs at the toe of the slope, then extends to the interior. Although our investigation focused only on the contribution of hydrate decomposition to submarine landslide, this process is also affected by both the slope material properties and topography. 展开更多
关键词 HYDRATE CANYON SUBMARINE SLIDE South China Sea
下载PDF
A fast identification method based on the typical geophysical differences between submarine shallow carbonates and hydrate bearing sediments in the northern South China Se a 被引量:5
17
作者 Jin-qiang Liang Wei Deng +6 位作者 Jing-an Lu Zeng-gui Kuang Yu-lin He Wei Zhang Yue-hua Gong Jin Liang Miao-miao Meng 《China Geology》 2020年第1期16-27,共12页
Bottom simulating reflector(BSR)has been recognized as one of the indicators of gas hydrates.However,BSR and hydrate are not one-to-one correspondence.In the Xisha area of South China Sea(SCS),carbonate rocks wildly d... Bottom simulating reflector(BSR)has been recognized as one of the indicators of gas hydrates.However,BSR and hydrate are not one-to-one correspondence.In the Xisha area of South China Sea(SCS),carbonate rocks wildly develop,which continuously distribute parallel to the seafloor with high amplitude on seismic sections,exhibiting reflections similar to BSRs in the Shenhu area nearby.This phenomenon causes some interference to hydrates identification.In this paper,the authors discussed the typical geophysical differences between carbonate rocks and hydrates,indicating that the main difference exists in relationship between porosity and velocity,causing different amplitude versus offset(AVO)characters.Then the authors proposed a new model assuming that the carbonates form the matrix and the hydrate fill the pore as a part of the matrix.The key modeling parameters have been optimized constrained by Pvelocities and S-velocities simultaneously,and the model works well both for carbonate rock and gas hydrate bearing sediments.For quantitative identification,the authors calculated the velocities when carbonates and hydrates form the matrix together in different proportions.Then they proposed a carbonate and hydrate identification template(CHIT),in which the possible hydrate saturation(PHS)and possible carbonate content(PCC)can be both scaled out for a group of sample composed by P-velocity and S-velocity.If PHS is far larger than PCC,it is more likely to be a hydrate sample because carbonates and hydrates do not coexist normally.The real data application shows that the template can effectively distinguish between hydrates and carbonate rocks,consequently reducing the risk of hydrate exploration. 展开更多
关键词 Gas hydrate Carbonate Rock physics Fast identification South China Sea Gas hydrate exploration engineering
下载PDF
Distributed optical fiber acoustic sensor for in situ monitoring of marine natural gas hydrates production for the first time in the Shenhu Area,China 被引量:2
18
作者 Xiang-ge He Xue-min Wu +6 位作者 Lei Wang Qian-yong Liang Li-juan Gu Fei Liu Hai-long Lu Yi Zhang Min Zhang 《China Geology》 2022年第2期322-329,共8页
The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole p... The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole production activities in the process of oil and gas development.The authors applied the DAS system in a gas production well in the South China Sea for in situ monitoring of the whole wellbore for the first time and obtained the distributed acoustic signals along the whole wellbore.These signals can clearly distinguish the vertical section,curve section,and horizontal production section.The collected acoustic signal with the frequency of approximately 50 Hz caused by the electric submersible pump exhibit a signal-to-noise ratio higher than 27 dB.By analyzing the acoustic signals in the production section,it can be located the layers with high gas production rates.Once an accurate physical model is built in the future,the gas production profile will be obtained.In addition,the DAS system can track the trajectory of downhole tools in the wellbore to guide the operation.Through the velocity analysis of the typical signals,the type of fluids in the wellbore can be distinguished.The successful application of the system provides a promising whole wellbore acoustic monitoring tool for the production of marine gas hydrate,with a good application prospect. 展开更多
关键词 Gas hydrate production monitoring Optical fiber sensor Distributed acoustic sensor In situ monitoring Fluid type NGHs exploration trial engineering Oil and gas exploration engineering Shenhu Area South China Sea
下载PDF
Geological characteristics of the Nankai Trough subduction zone and their tectonic significances
19
作者 Jie Zhang Ling Chen +1 位作者 Zihua Cheng Limei Tang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第10期81-95,共15页
The Nankai Trough subduction zone is a typical subduction system characterized by subduction of multiple geological units of the Philippine Sea Plate(the Kyushu-Palau Ridge,the Shikoku Basin,the Kinan Seamount Chain,a... The Nankai Trough subduction zone is a typical subduction system characterized by subduction of multiple geological units of the Philippine Sea Plate(the Kyushu-Palau Ridge,the Shikoku Basin,the Kinan Seamount Chain,and the Izu-Bonin Arc)beneath the Eurasian Plate in the southwest of Japan.This study presents a geophysical and geochemical analysis of the Nankai Trough subduction zone in order to determine the features and subduction effects of each geological unit.The results show that the Nankai Trough is characterized by lowgravity anomalies(–20 mGal to–40 mGal)and high heat flow(60–200 mW/m2)in the middle part and low heat flow(20–80 mW/m2)in the western and eastern parts.The crust of the subducting plate is 5–20 km thick.The mantle composition of the subducting plate is progressively depleted from west to east.Subduction of aseismic ridges(e.g.,the Kyushu-Palau Ridge,the Kinan Seamount Chain,and the Zenisu Ridge)is a common process that leads to a series of subduction effects at the Nankai Trough.Firstly,aseismic ridge or seamount chain subduction may deform the overriding plate,resulting in irregular concave topography along the front edge of the accretionary wedge.Secondly,it may have served as a seismic barrier inhibiting rupture propagation in the 1944 Mw 8.1 and 1946 Mw 8.3 earthquakes.In addition,subduction of the Kyushu-Palau Ridge and hot and young Shikoku Basin lithosphere may induce slab melting,resulting in adakitic magmatism and the provision of ore-forming metals for the formation of porphyry copper and gold deposits in the overriding Japan Arc.Based on comparisons of their geophysical and geochemical characteristics,we suggest that,although the Izu-Bonin Arc has already collided with the Japan Arc,the Kyushu-Palau Ridge,which represents a remnant arc of the Izu-Bonin Arc,is still at the subduction stage characterized by a single-vergence system and a topographic boundary with the Japan Arc. 展开更多
关键词 Nankai Trough subduction zone velocity structure gravity modeling GEOCHEMISTRY PETROLOGY slab melting geological effect
下载PDF
Coupled δ^(15)N_(TN) and δ^(13)C_(TOC) Insights into Methane Seepage Activities in Bulk Marine Sediments of the Qiongdongnan Basin, South China Sea
20
作者 MIAO Xiaoming FENG Xiuli +5 位作者 HU Limin LI Jingrui LIU Xiting WANG Nan XIAO Qianwen WEI Jiangong 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第6期1495-1503,共9页
Recently,methane seepage related to the dissociation of natural gas hydrates has attracted much attention,which has a significant impact on the study of the global carbon and nitrogen cycles.Based on the detailed geoc... Recently,methane seepage related to the dissociation of natural gas hydrates has attracted much attention,which has a significant impact on the study of the global carbon and nitrogen cycles.Based on the detailed geochemical analyses of sediments(core Q6)from the Qiongdongnan Basin,South China Sea,three methane seepage activities were identified and the exact horizons of anaerobic oxidation of methane(AOM)were defined.Furthermore,organic carbon isotopic(δ^(13)C_(TOC))levels ranged from−23.6‰–−20.6‰PDB;nitrogen isotopes(δ^(15)N_(TN))of the same sedimentary samples ranged from 1.8‰–5.3‰.We also found obvious simultaneous negative excursions of organic carbon isotopes(δ^(13)C_(TOC))and nitrogen isotopes(δ^(15)N_(TN))in the horizons of methane seepages.Compared with the normal sediments,their maximum negative excursions were 2.6‰and 2.5‰,respectively.We discuss in detail the various characteristics ofδ^(15)N_(TN) andδ^(13)C_(TOC) levels in sediments and their coupling responses to methane seepage activities.We believe that the methane seepage events changed the evolution trajectory ofδ^(15)N_(TN) andδ^(13)C_(TOC) levels in sediment records,which resulted in the simultaneous negative excursions.This phenomenon is of great significance to reveal the historical dissociation of natural gas hydrates and their influence on the deep-sea carbon and nitrogen pool. 展开更多
关键词 methane seepage TS/TOC nitrogen isotopes organic carbon isotopes South China Sea
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部