期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
3D surfactant-dispersed graphenes as cathode interfacial materials for organic solar cells 被引量:7
1
作者 Fei Pan Song Bai +5 位作者 Xian Wei Yingfen Li Dianyong Tang Xiwen Chen Menglan Lv Yongfang Li 《Science China Materials》 SCIE EI CSCD 2021年第2期277-287,共11页
Graphene dispersions in low-boiling-point green solvents have wide applications in coatings,conducting inks,batteries,electronics and solar cells.Two three-dimensional(3D)cathode interfacial materials(CIMs)(1,3,5,7,9,... Graphene dispersions in low-boiling-point green solvents have wide applications in coatings,conducting inks,batteries,electronics and solar cells.Two three-dimensional(3D)cathode interfacial materials(CIMs)(1,3,5,7,9,11,13,15-octa-(9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-vinylpentacyclo-octasiloxane)(POSSFN)and(1,3,5,7-tetra-(9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-adamantane)(ADMAFN)are excellent surfactants for dispersing graphene in ethanol at the concentration of 0.97–1.18 mg mL−1,in agreement with their calculated large adsorption energies on graphene.The results of electron spin resonance,Raman,scanning Kelvin probe microscopy and X-ray photoelectron spectroscopy measurements indicate that the amino groups could n-dope graphene or form dipole interaction with graphene.The two 3D-surfactant-based graphene composites(POSSFN-G and ADMAFN-G)can work as high-performance CIMs in organic solar cells(OSCs),which improve the power conversion efficiency(PCE)of the OSCs based on PM6:Y6 to 15.9%–16.1%.ADMAFN forms dipole interaction with graphene in ADMAFN-G and the composite CIM delivers high PCE of 16.11%in the OSCs,while POSSFN forms n-doped composition with graphene in POSSFN-G which works well as thicker CIM film in the OSCs. 展开更多
关键词 organic solar cells INTERFACES 3D cathode interfacial materials graphene composites
原文传递
Single-wall carbon nanotube-containing cathode interfacial materials for high performance organic solar cells 被引量:2
2
作者 Fei Pan Song Bai +5 位作者 Tianhao Liu Dianyong Tang Xian Wei Xiwen Chen Menglan Lv Yongfang Li 《Science China Chemistry》 SCIE EI CAS CSCD 2021年第4期565-575,共11页
Water/alcohol soluble cathode interfacial materials(CIMs)are playing important roles in optoelectronic devices such as organic light emitting diodes,perovskite solar cells and organic solar cells(OSCs).Herein,n-doped ... Water/alcohol soluble cathode interfacial materials(CIMs)are playing important roles in optoelectronic devices such as organic light emitting diodes,perovskite solar cells and organic solar cells(OSCs).Herein,n-doped solution-processable single-wall carbon nanotubes(SWCNTs)-containing CIMs for OSCs are developed by dispersing SWCNTs to the typical CIMs perylene diimide(PDI)derivatives PDIN and PDINO.The Raman and X-ray photoelectron spectroscopy(XPS)measurement results illustrate the ndoped behavior of SWCNTs by PDIN/PDINO in the blend CIMs.The blended and n-doped SWCNTs can tune the work function and enhance the conductivity of the PDI-derivative/SWCNT(PDI-CNT)composite CIMs,and the composite CIMs can regulate and down-shift the work function of cathode,reduce the charge recombination,improve the charge extraction rate and enhance photovoltaic performance of the OSCs.High power conversion efficiency(PCE)of 17.1%and 17.7%are obtained for the OSCs based on PM6:Y6 and ternary PM6:Y6:PC_(71) BM respectively with the PDI-CNTcomposites CIMs.These results indicate that the ndoped SWCNT-containing composites,like other n-doped nanomaterials such as zero dimensional fullerenes and two dimensional graphenes,are excellent CIMs for OSCs and could find potential applications in other optoelectronic devices. 展开更多
关键词 organic solar cells cathode interfacial materials n-doped single wall carbon nanotubes silver electrode
原文传递
High electron mobility fluorinated indacenodithiophene small molecule acceptors for organic solar cells 被引量:1
3
作者 Fei Pan Xiaojun Li +8 位作者 Song Bai Tianhao Liu Xian Wei Yingfen Li Shanshan Chen Changduk Yang Xiwen Chen Menglan Lv Yongfang Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第3期1257-1262,共6页
Indacenodithiophene(IDT)derivatives are kinds of the most representative and widely used cores of small molecule acceptors(SMAs)in organic solar cells(OSCs).Here we systematically investigate the influence of end-grou... Indacenodithiophene(IDT)derivatives are kinds of the most representative and widely used cores of small molecule acceptors(SMAs)in organic solar cells(OSCs).Here we systematically investigate the influence of end-group fluo rination density and position on the photovoltaic properties of the IDT-based SMAs IDIC-nF(n=0,2,4).The absorption edge of IDIC-nF red-shifts with theπ-πstacking and crystallinity improvement,and their electronic energy levels downshift with increasing n.Due to the advantages of J_(sc)and FF as well as acceptable V_(oc),the difluorinated IDIC-2 F acceptor based OSCs achieve the highest power conversion efficiency(PCE)of 13%,better than the OSC devices based on IDIC and IDIC-4 F as acceptors.And the photovoltaic performance of the PTQ10:IDIC-2 F OSCs is insensitive to the active layer thickness:PCE still keep high values of 12.00%and 11.46%for the devices with active layer thickness of 80 and 354 nm,respectively.This work verifies that fine and delicate modulation of the SMAs molecular structure could optimize photovoltaic performance of the corresponding OSCs.Meanwhile,the thickness-insensitivity property of the OSCs has potential for large-scale and printable fabrication technology. 展开更多
关键词 Organic solar cells Indacenodithiophene Electron mobility FLUORINATION π-πStacking CRYSTALLINITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部