期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of non-uniform stress characteristics on stress measurement in specimen 被引量:6
1
作者 廖凯 吴运新 +2 位作者 龚海 闫鹏飞 郭俊康 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第5期789-794,共6页
There is a remarkable difference in stress distribution between a specimen and a plate removed from the specimen.The plate presents a uniform stress distribution whereas the specimen presents a non-uniform stress dist... There is a remarkable difference in stress distribution between a specimen and a plate removed from the specimen.The plate presents a uniform stress distribution whereas the specimen presents a non-uniform stress distribution.Firstly,the real stress distributions in plates with thickness of 30,40 and 50 mm and then in the specimens were obtained through simulation and X-ray surface stress measurement.Secondly,in order to study the impact of specimens shapes and processing ways on the results accuracy,two irregular shapes (parallelogram and trapezoid) and two processing ways (saw and electron discharge machining (EDM)) were compared and analyzed by simulation and experiment using layer removal method,then the specimen effects on measurement results were evaluated.The results show that:1) the non-uniform stress distribution characteristics of the specimen near the surface of the cut is significant,the range of non-uniform stress distribution is approximately one-thickness distance away from the cut,and it decreases gradually along the depth;2) In order to ensure the stability in the results,it is suitable to take the specimen plane size 2-3 times of its thickness;3) Conventional processing methods have little effect on experimental results and the average deviation is less than 5%. 展开更多
关键词 SPECIMEN non-uniform characteristic layer removal method (LRM) stress distribution aluminum alloy plate
下载PDF
Influence of Mechanical Behavior between the Grains on Stress Fluctuation of Aluminum Alloy Thick Plate
2
作者 LIAO Kai WU Yunxin GONG Hai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1212-1216,共5页
The research on fluctuation and inhomogeneity of internal stress of aluminum alloy thick plate is theoretical and technological base for stress control technology. By using X-ray diffraction technique and mechanical t... The research on fluctuation and inhomogeneity of internal stress of aluminum alloy thick plate is theoretical and technological base for stress control technology. By using X-ray diffraction technique and mechanical test method, aluminum alloy with typical fine sub-grains, coarse recrystallized grains, and second phase was analyzed; the interactive mechanical model between grains was built for analysis of variation of internal stress within the local micro structure by imitating the actual distribution of grains. The experimental result shows that the mechanical model can effectively explain the reason for fluctuation of microscopic stress, which also proves that the inhomogeneous distribution of metal organization is the cause for the complex distribution of microscopic stress. The model can well describe stress distribution of thick plate caused by thermal deformation. Besides, it well describes mechanism of stress fluctuation. 展开更多
关键词 aluminum alloy stress fluctuation internal stress plastic deformation
下载PDF
Non-conjugated polymers as thickness-insensitive electron transport materials in high-performance inverted organic solar cells 被引量:1
3
作者 Zhiquan Zhang Zheling Zhang +4 位作者 Yufu Yu Bin Zhao Sheng Li Jian Zhang Songting Tan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期196-202,I0007,共8页
Two non-conjugated polymers PEIE-DBO and PEIE-DCO, prepared by quaternization of polyethyleneimine ethoxylate by 1,8-dibromooctane and 1,8-dichlorooctane respectively, are developed as electron transport layer(ETL) in... Two non-conjugated polymers PEIE-DBO and PEIE-DCO, prepared by quaternization of polyethyleneimine ethoxylate by 1,8-dibromooctane and 1,8-dichlorooctane respectively, are developed as electron transport layer(ETL) in high-performance inverted organic solar cells(OSCs), and the effects of halide ions on polymeric photoelectric performance are fully investigated. PEIE-DBO possesses higher electron mobility(3.68×10-4 cm2 V-1s-1), higher conductivity and more efficient exciton dissociation and electron extraction, attributed to its lower work function(3.94 eV) than that of PEIE-DCO, which results in better photovoltaic performance in OSCs. The inverted OSCs with PTB7-Th: PC71BM as photoactive layer and PEIE-DBO as ETL exhibit higher PCE of 10.52%, 9.45% and 9.09% at the thickness of 9, 35 and 50 nm,respectively. To our knowledge, PEIE-DBO possesses the best thickness-insensitive performance in polymeric ETLs of inverted fullerene-based OSCs. Furthermore, PEIE-DBO was used to fabricate the inverted non-fullerene OSCs(PM6:Y6) and obtained a high PCE of 15.74%, which indicates that PEIE-DBO is effective both in fullerene-based OSCs and fullerene-free OSCs. 展开更多
关键词 Organic solar cells Electron transport materials Thickness-insensitive Non-conjugated polymer
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部