期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effects of acid mine drainage on photochemical and biological degradation of dissolved organic matter in karst river water
1
作者 Linwei Li Xingxing Cao +4 位作者 Chujie Bu Pan Wu Biao Tian Yongheng Dai Yeye Ren 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期26-38,共13页
Dissolved organic matter(DOM)can be removed or transformed by photochemical and biological processes,producing the negative effect of transforming organic carbon into inorganic carbon,which plays a vital role in the k... Dissolved organic matter(DOM)can be removed or transformed by photochemical and biological processes,producing the negative effect of transforming organic carbon into inorganic carbon,which plays a vital role in the karst carbon cycle.However,acid mine drainage(AMD)will affect this process,so the degradation of DOM in karst river water(KRW)needs to be studied in this context.In this study,to reveal the evolution processes of DOM under photochemical and biological conditions in AMD-impacted KRW,AMD and KRW were mixed in different ratios under conditions of visible light irradiation(VL),biodegradation(BD),ultraviolet irradiation(UV)and ultraviolet irradiation+biodegradation(UV+BD).The average DOC concentrations in samples after mixing AMD and KRW in different proportions decreased significantly(by 23%)in UV+BD,which was 1.2–1.4 times higher than under the other conditions and would lead to a significant release of inorganic carbon.Further analysis of the fluorescence parameters via parallel factor analysis(PARAFAC)revealed that the DOM fluorescence components in AMD comprised mainly protein-like substances derived from autochthonous components,while the DOM fluorescence components in KRW were mainly humic-like substances with both autochthonous and allochthonous sources.Therefore,AMD could promote both the photochemical and biological degradation of DOM in karst receiving streams,resulting in the conversion of DOC to inorganic carbon.The results showed that the synergistic effects of UV+BD and AMD accelerated the degradation of DOM and the release of inorganic carbon in KRW,thus affecting the stability of the karst carbon cycle. 展开更多
关键词 Acid mine drainage Dissolved organic matter Karst river water Photochemical degradation Biological degradation
原文传递
Geographical Variation in the Advertisement Calls of Leptobrachella ventripunctata(Anura:Megophryidae)in Southwestern China
2
作者 Chaobo FENG Tuo SHEN +4 位作者 Lang MU Jing LIU Shize LI Yixin DIAO Haijun SU 《Asian Herpetological Research》 SCIE CSCD 2024年第3期140-151,共12页
In anurans,advertisement calls(ACs)are an essential form of intraspecific communication.This study evaluates geographical variation in the ACs of Leptobrachella ventripunctata in the Guizhou Plateau,southwestern China... In anurans,advertisement calls(ACs)are an essential form of intraspecific communication.This study evaluates geographical variation in the ACs of Leptobrachella ventripunctata in the Guizhou Plateau,southwestern China,and explores correlations between call characteristics,body size,and environmental factors.ACs are simple calls of L.ventripunctata,and apparent differences were observed in the ACs among different geographical populations of L.ventripunctata.The Call duration(CD)revealed a significant positive correlation with altitude and a significant negative correlation with temperature and humidity.Moreover,the Dominant frequency(DF)exhibited a significant negative correlation with altitude and the habitat closure degree and a significant positive correlation with temperature.These variations in ACs between different geographical populations of L.ventripunctata may critically impact the adaptive evolution of species,and the calls may also be relevant for environmental selection. 展开更多
关键词 ANURAN BIOACOUSTICS environmental factors geographical divergence
下载PDF
Elevated methylmercury production in mercury-contaminated soil and its bioaccumulation in rice:key roles of algal decomposition
3
作者 Di Liu Yan Wang +5 位作者 Tianrong He Deliang Yin Shouyang He Xian Zhou Yiyuan Xu Enxin Liu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第12期31-45,共15页
Algal-derived organic matter(AOM)regulates methylmercury(MeHg)fate in aquatic ecosystems,whereas its role in MeHg production and bioaccumulation in Hg-contaminated paddies is unclear.Pot and microcosm experiments were... Algal-derived organic matter(AOM)regulates methylmercury(MeHg)fate in aquatic ecosystems,whereas its role in MeHg production and bioaccumulation in Hg-contaminated paddies is unclear.Pot and microcosm experiments were thus performed to understand the response characteristics of MeHg concentrations in soil and rice in different rice-growing periods to algal decomposition.Compared to the control,algal decomposition significantly increased soil water-soluble cysteine concentrations during the rice-tillering and grain-filling periods(P<0.05).It also significantly lowered the molecular weight of soil-dissolved organic matter(SDOM)during the rice-tillering period(P<0.05)and SDOM humification/aromaticity during the grain-filling period.Compared to the control,AOM input increased the abundance of potential Hg and non-Hg methylators in soil.Furthermore,it also greatly increased soil MeHg concentrations by 25.6%-80.2%and 12.6%-66.1%during the rice-tillering and grain-filling periods,with an average of 42.25%and 38.42%,respectively,which were significantly related to the elevated cysteine in soil and the decrease in SDOM molecular weight(P<0.01).In the early stage(within 10 days of microcosm experiments),the MeHg concentrations in decayed algal particles showed a great decrease(P<0.01),suggesting a potential MeHg source in soil.Ultimately,algal decomposition greatly increased the MeHg concentrations and bioaccumulation factors in rice grains,by 72.30%and 16.77%,respectively.Overall,algal decomposition in Hg-contaminated paddies is a non-negligible factor promoting MeHg accumulation in soil-rice systems. 展开更多
关键词 MERCURY METHYLMERCURY Algae Organic matter Rice(Oryza sativa L.)
原文传递
Effects of fulvic acid and humic acid from different sources on Hg methylation in soil and accumulation in rice
4
作者 Shu Ran Tianrong He +1 位作者 Xian Zhou Deliang Yin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第9期93-105,共13页
Humus is often used as an organic modifier to reduce the bioaccumulation of heavy metals in plants, but the effects of different humus components from different sources on the fate of mercury(Hg) in paddy fields are s... Humus is often used as an organic modifier to reduce the bioaccumulation of heavy metals in plants, but the effects of different humus components from different sources on the fate of mercury(Hg) in paddy fields are still unclear. Here, fulvic acid(FA) and humic acid(HA) extracted from composted straw(CS), composted cow dung(CCD), peat soil(PM) and lignite coal(LC) were used to understand their effects on the methylation and bioaccumulation of Hg in paddy soil by pot experiments. Amendments of both FA and HA largely increased the abundance of Hg-methylating microbes and low-molecular-weight organic matters(e.g, cysteine) in paddy soil. They were also found to change the aromaticity, molecular size and Chromophoric DOM concentration of DOM, and resulted in heterogeneous effects on migration and transformation of Hg. All the FA-amended treatments increased the mobility and methylation of Hg in soil and its absorption in roots. Nevertheless, FA from different sources have heterogeneous effects on transport of Hg between rice tissues. FA-CCD and FA-PM promoted the translocation of Me Hg from roots to rice grains by 32.95% and 41.12%, while FA-CS and FA-LC significantly inhibited the translocation of inorganic Hg(IHg) by 52.65% and 66.06% and of Me Hg by 46.65% and 36.23%, respectively. In contrast, all HA-amended treatments reduced the mobility of soil Hg, but promoted Hg methylation in soil. Among which, HA-CCD and HA-PM promoted the translocation of Me Hg in rice tissues by 88.95% and 64.10%, while its accumulation in rice grains by 28.43% and 28.69%, respectively. In general, the application of some FA and HA as organic modifiers to reduce Hg bioaccumulation in rice is not feasible. 展开更多
关键词 Humic acid Fulvic acid METHYLMERCURY ACCUMULATION RICE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部