In order to fill the gaps of the research on the data of automatic weather stations(referred to as automatic stations)not used for the climate characteristics of extremely short-time severe precipitation in Guizhou Pr...In order to fill the gaps of the research on the data of automatic weather stations(referred to as automatic stations)not used for the climate characteristics of extremely short-time severe precipitation in Guizhou Province,the climate characteristics of extremely short-time severe precipitation in Guizhou Province were compared and analyzed based on the hourly precipitation data of the automatic stations and the national weather stations(referred to as the national stations)from April to September during 2010-2019.The results show that the average state of maximum hourly precipitation of all stations(the automatic stations and the national stations)and national stations both are representative,but the data of all stations are more representative when the maximum hourly precipitation is extreme.The 99.5 th quantile is the most reasonable threshold of extremely short-time severe precipitation in each station.The spatial distribution of extremely short-time severe precipitation intensity in all stations and national stations is generally that the southern region is stronger than the northern region,and the intensity values are concentrated in the range of 40-50 mm/h.All stations data can better reflect the distribution characteristics of<40 and≥50 mm/h.The national stations data underestimates the precipitation intensity in the southern and northeastern marginal areas of Guizhou,and slightly exaggerates the precipitation intensity in the northern part of Guizhou.The monthly and diurnal variations of the frequency of extremely short-time severe precipitation in all stations and national stations are very obvious and the variation trend is the same,but the intensity of extremely short-time severe precipitation has no obvious monthly variation characteristics.There is no significant diurnal variation in the intensity of extremely short-time severe precipitation in all stations,but the diurnal variation in the data of national stations is significant.Since the frequency of extremely short-time severe precipitation in national stations is less,the diurnal variation in the intensity of extremely short-time severe precipitation in all stations is more statistically significant.展开更多
Taking a typical strong storm in Guizhou on April 5, 2017 for example, the diagnosis analysis used the water vapor cloud and the initial field of EC thin grid, including physical quantity, surface and upper air meteor...Taking a typical strong storm in Guizhou on April 5, 2017 for example, the diagnosis analysis used the water vapor cloud and the initial field of EC thin grid, including physical quantity, surface and upper air meteorological observation, as well as radar observation data. For the environment parameter analysis, small CAPE value tended to underestimate storm intensity on potential forecast stage, strong vertical wind shear revealed the strong dry cold air was the important intensity factors of the storm. The water vapor cloud map can be used to monitor the most important features, the dry zone, the wet zone and the boundary between them. When dry intrusion is found, it can be used as one of the bases for the development of heavy rain. Dry cold air intrusion on high-level was traced by water vapor images. And in this process, the analyses revealed the role of dry cold air’s influence on intensity of the storm.展开更多
Using physical quantities calculated by 16 radiosonde stations of Southwest China during 2010-2015,nine kinds of physical quantities with certain representational significance in water vapor,thermal and dynamic condit...Using physical quantities calculated by 16 radiosonde stations of Southwest China during 2010-2015,nine kinds of physical quantities with certain representational significance in water vapor,thermal and dynamic conditions were selected.Via box-plot,statistical analysis was conducted,and thresholds of sounding physical quantities of rainstorm in Southwest China were obtained,which could provide certain reference for further improving the rainstorm forecast in Southwest China.展开更多
基金Scientific Research Project of Guizhou Meteorological Bureau(QQKD[2020]08-04).
文摘In order to fill the gaps of the research on the data of automatic weather stations(referred to as automatic stations)not used for the climate characteristics of extremely short-time severe precipitation in Guizhou Province,the climate characteristics of extremely short-time severe precipitation in Guizhou Province were compared and analyzed based on the hourly precipitation data of the automatic stations and the national weather stations(referred to as the national stations)from April to September during 2010-2019.The results show that the average state of maximum hourly precipitation of all stations(the automatic stations and the national stations)and national stations both are representative,but the data of all stations are more representative when the maximum hourly precipitation is extreme.The 99.5 th quantile is the most reasonable threshold of extremely short-time severe precipitation in each station.The spatial distribution of extremely short-time severe precipitation intensity in all stations and national stations is generally that the southern region is stronger than the northern region,and the intensity values are concentrated in the range of 40-50 mm/h.All stations data can better reflect the distribution characteristics of<40 and≥50 mm/h.The national stations data underestimates the precipitation intensity in the southern and northeastern marginal areas of Guizhou,and slightly exaggerates the precipitation intensity in the northern part of Guizhou.The monthly and diurnal variations of the frequency of extremely short-time severe precipitation in all stations and national stations are very obvious and the variation trend is the same,but the intensity of extremely short-time severe precipitation has no obvious monthly variation characteristics.There is no significant diurnal variation in the intensity of extremely short-time severe precipitation in all stations,but the diurnal variation in the data of national stations is significant.Since the frequency of extremely short-time severe precipitation in national stations is less,the diurnal variation in the intensity of extremely short-time severe precipitation in all stations is more statistically significant.
文摘Taking a typical strong storm in Guizhou on April 5, 2017 for example, the diagnosis analysis used the water vapor cloud and the initial field of EC thin grid, including physical quantity, surface and upper air meteorological observation, as well as radar observation data. For the environment parameter analysis, small CAPE value tended to underestimate storm intensity on potential forecast stage, strong vertical wind shear revealed the strong dry cold air was the important intensity factors of the storm. The water vapor cloud map can be used to monitor the most important features, the dry zone, the wet zone and the boundary between them. When dry intrusion is found, it can be used as one of the bases for the development of heavy rain. Dry cold air intrusion on high-level was traced by water vapor images. And in this process, the analyses revealed the role of dry cold air’s influence on intensity of the storm.
文摘Using physical quantities calculated by 16 radiosonde stations of Southwest China during 2010-2015,nine kinds of physical quantities with certain representational significance in water vapor,thermal and dynamic conditions were selected.Via box-plot,statistical analysis was conducted,and thresholds of sounding physical quantities of rainstorm in Southwest China were obtained,which could provide certain reference for further improving the rainstorm forecast in Southwest China.