Drug-resistance and drastic side effects are two major issues of traditional chemotherapy which may result in trail failure even death.Nanoparticle-mediated multidrug combination treatment has been proven to be a feas...Drug-resistance and drastic side effects are two major issues of traditional chemotherapy which may result in trail failure even death.Nanoparticle-mediated multidrug combination treatment has been proven to be a feasible strategy to overcome these challenges.In the present study,amphipathic block polymer of methoxyl poly(ethylene glycol)-poly(aspartyl(dibutylethylenediamine)-co-phenylalanine)(m PEG-P(Asp(DBA)-co-Phe))was synthesized and self-assembled into p H-responsive polymeric vesicle.The vesicle was utilized to co-deliver cancer-associated epidermal growth factor(EGFR)inhibitor of afatinib and DNA-damaging chemotherapeutic doxorubicin hydrochloride(DOX)for enhanced non-small-cell lung cancer(NSCLC)therapy.As evaluated in vitro,the p H-responsive design of nanovesicle resulted in a rapid release of encapsulated drugs into tumor cells and caused enhanced cell apoptosis.In addition,in vivo therapeutic studies were conducted and the results evidenced that the co-delevery of DOX and afatinib using p H-sensitive nanovector was a promising strategy for NSCLC treatment.展开更多
基金financially supported by the National Basic Research Program of China (No. 2015CB755500)the Natural Science Foundation of Guangdong Province (No. 2014A030312018)Science and Technology Planning Project of Guangdong Province (No. 2016A020215088)
文摘Drug-resistance and drastic side effects are two major issues of traditional chemotherapy which may result in trail failure even death.Nanoparticle-mediated multidrug combination treatment has been proven to be a feasible strategy to overcome these challenges.In the present study,amphipathic block polymer of methoxyl poly(ethylene glycol)-poly(aspartyl(dibutylethylenediamine)-co-phenylalanine)(m PEG-P(Asp(DBA)-co-Phe))was synthesized and self-assembled into p H-responsive polymeric vesicle.The vesicle was utilized to co-deliver cancer-associated epidermal growth factor(EGFR)inhibitor of afatinib and DNA-damaging chemotherapeutic doxorubicin hydrochloride(DOX)for enhanced non-small-cell lung cancer(NSCLC)therapy.As evaluated in vitro,the p H-responsive design of nanovesicle resulted in a rapid release of encapsulated drugs into tumor cells and caused enhanced cell apoptosis.In addition,in vivo therapeutic studies were conducted and the results evidenced that the co-delevery of DOX and afatinib using p H-sensitive nanovector was a promising strategy for NSCLC treatment.