期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A comprehensive aerodynamic-thermalmechanical design method for fast response turbocharger applied in aviation piston engines
1
作者 Yu Zhou Yue Song +5 位作者 Shuai Zhao Xueyu Li Longtao Shao Huansong Yan Zheng Xu Shuiting Ding 《Propulsion and Power Research》 SCIE 2024年第2期145-165,共21页
Limited by the poor transient response performance of turbochargers,the dynamic performance of aviation piston engines tends to deteriorate.In a bid to enhance the turbocharger’s acceleration capabilities,this study ... Limited by the poor transient response performance of turbochargers,the dynamic performance of aviation piston engines tends to deteriorate.In a bid to enhance the turbocharger’s acceleration capabilities,this study scrutinizes various factors impacting its performance.Based on the operational principles and transient response process of the turbocharger,three types of in-ertiadnamely,aerodynamic inertia(ADI),thermal inertia(TI),and mechanical inertia(MI)d are identified and addressed for design.To begin,this paper pioneers the innovative definition of a method for evaluating the transient response performance of the turbocharger.This method incor-porates the introduction of an ADI parameter,inspired by the definition of MI.Subsequently,a thin-walled volute design with a low Biot number and a lightweight turbine impeller is introduced to reduce the turbocharger’s TI and MI.The simulation results of theflowfield distribution within the volute and diffuser demonstrate the comprehensive design method’s effectiveness in improving gas pressure and temperature distributions in these components.Notably,the pressure distributionfluctuation in the constant moment-of-momentum volute(CMV)is 62.8%lower than that in the constant velocity moment volute(CVMV).The low-TI thin-walled volute not only en-hances the turbocharger’s response speed but also reduces its weight by approximately 40%.The impact of three types of inertia on the engine’s response speed is quantified as follows:ADI(94%)>MI(5%)>TI(1%).This conclusion has been verified through test results of both the turbocharger and the engine.This design method not only significantly improves the turbo-charger’s response performance but also offers valuable insights for the optimal design of other blade mechanical systems. 展开更多
关键词 TURBOCHARGER Fast response design method Aerodynamic inertia Thermal inertia Mechanical inertia
原文传递
Gas exchange optimization in aircraft engines using sustainable aviation fuel:A design of experiment and genetic algorithm approach
2
作者 Zheng Xu Jinze Pei +12 位作者 Shuiting Ding Longfei Chen Shuai Zhao Xiaowei Shen Kun Zhu Longtao Shao Zhiming Zhong Huansong Yan Farong Du Xueyu Li Pengfei Yang Shenghui Zhong Yu Zhou 《Energy and AI》 EI 2024年第3期261-280,共20页
The poppet valves two-stroke(PV2S)aircraft engine fueled with sustainable aviation fuel is a promising option for general aviation and unmanned aerial vehicle propulsion due to its high power-to-weight ratio,uniform t... The poppet valves two-stroke(PV2S)aircraft engine fueled with sustainable aviation fuel is a promising option for general aviation and unmanned aerial vehicle propulsion due to its high power-to-weight ratio,uniform torque output,and flexible valve timings.However,its high-altitude gas exchange performance remains unexplored,presenting new opportunities for optimization through artificial intelligence(AI)technology.This study uses validated 1D+3D models to evaluate the high-altitude gas exchange performance of PV2S aircraft engines.The valve timings of the PV2S engine exhibit considerable flexibility,thus the Latin hypercube design of experiments(DoE)methodology is employed to fit a response surface model.A genetic algorithm(GA)is applied to iteratively optimize valve timings for varying altitudes.The optimization process reveals that increasing the intake duration while decreasing the exhaust duration and valve overlap angles can significantly enhance high-altitude gas exchange performance.The optimal valve overlap angle emerged as 93°CA at sea level and 82°CA at 4000 m altitude.The effects of operating parameters,including engine speed,load,and exhaust back pressure,on the gas exchange process at varying altitudes are further investigated.The higher engine speed increases trapping efficiency but decreases the delivery ratio and charging efficiency at various altitudes.This effect is especially pronounced at elevated altitudes.The increase in exhaust back pressure will significantly reduce the delivery ratio and increase the trapping efficiency.This study demonstrates that integrating DoE with AI algorithms can enhance the high-altitude performance of aircraft engines,serving as a valuable reference for further optimization efforts. 展开更多
关键词 Poppet valves two-stroke Design of experiment Genetic algorithm optimization Heavy fuel aircraft engine High altitude gas exchange performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部