The advancement of micro-and nanostructuring techniques in optics is driven by the demand for continuous miniaturization and the high geometrical accuracy of photonic devices and integrated systems.Here,UV-LED project...The advancement of micro-and nanostructuring techniques in optics is driven by the demand for continuous miniaturization and the high geometrical accuracy of photonic devices and integrated systems.Here,UV-LED projection photolithography is demonstrated as a simple and low-cost approach for rapid generation of two-dimensional optical micro-and nanostructures with high resolution and accuracy using standard optics only.The developed system enables the projection of structure patterns onto a substrate with 1000-fold demagnification.Photonic devices,e.g.,waveguides and microring resonators,on rigid or flexible substrates with varied geometrical complexity and overall structure dimensions from the nanometer to centimeter scale were successfully prepared.In particular,high-resolution gratings with feature sizes down to 150 nm and periods as small as 400 nm were realized for the first time by this approach.Waveguides made of doped laser active materials were fabricated,and their spontaneous emission was detected.The demonstrated superior performance of the developed approach may find wide applications in photonics,plasmonics,and optical materials science,among others.展开更多
The demand for miniaturization and integration of optical elements has fostered the development of various micro-and nanofabrication technologies.In this work,we developed a low-cost UV-LED-based microscope projection...The demand for miniaturization and integration of optical elements has fostered the development of various micro-and nanofabrication technologies.In this work,we developed a low-cost UV-LED-based microscope projection photolithography system for rapid and high-resolution fabrication.This system can be easily implemented using off-the-shelf components.It allows for micro-and nanostructuring within seconds.By optimizing the process,a minimum feature size down to approximately 85 nm was successfully realized.In addition,investigations on fabrication of the same structures using both costly and economic microscope objectives were performed.Feature sizes below 100 nm can be stably achieved.The demonstrated approach extends the technology capabilities and may find applications in fields such as nanophotonics,biophotonics sensing and material science.展开更多
基金support from the German Research Foundation(DFG)under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD(EXC 2122,Project ID 390833453)the DFG(German Research Foundation,Project ID RE3012/4-1 and RE3012/2-1).
文摘The advancement of micro-and nanostructuring techniques in optics is driven by the demand for continuous miniaturization and the high geometrical accuracy of photonic devices and integrated systems.Here,UV-LED projection photolithography is demonstrated as a simple and low-cost approach for rapid generation of two-dimensional optical micro-and nanostructures with high resolution and accuracy using standard optics only.The developed system enables the projection of structure patterns onto a substrate with 1000-fold demagnification.Photonic devices,e.g.,waveguides and microring resonators,on rigid or flexible substrates with varied geometrical complexity and overall structure dimensions from the nanometer to centimeter scale were successfully prepared.In particular,high-resolution gratings with feature sizes down to 150 nm and periods as small as 400 nm were realized for the first time by this approach.Waveguides made of doped laser active materials were fabricated,and their spontaneous emission was detected.The demonstrated superior performance of the developed approach may find wide applications in photonics,plasmonics,and optical materials science,among others.
基金the financial support from the German Research Foundation(DFG)under Germany’s Excellence Strategy within the Cluster of Excellence PhoenixD(EXC 2122,Project ID 390833453).
文摘The demand for miniaturization and integration of optical elements has fostered the development of various micro-and nanofabrication technologies.In this work,we developed a low-cost UV-LED-based microscope projection photolithography system for rapid and high-resolution fabrication.This system can be easily implemented using off-the-shelf components.It allows for micro-and nanostructuring within seconds.By optimizing the process,a minimum feature size down to approximately 85 nm was successfully realized.In addition,investigations on fabrication of the same structures using both costly and economic microscope objectives were performed.Feature sizes below 100 nm can be stably achieved.The demonstrated approach extends the technology capabilities and may find applications in fields such as nanophotonics,biophotonics sensing and material science.