期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Publisher Correction to:Highly Elastic,Bioresorbable Polymeric Materials for Stretchable,Transient Electronic Systems
1
作者 Jeong‑Woong Shin Dong‑Je Kim +12 位作者 Tae‑Min Jang Won Bae Han Joong Hoon Lee Gwan‑Jin Ko Seung Min Yang Kaveti Rajaram Sungkeun Han Heeseok Kang Jun Hyeon Lim Chan‑Hwi Eom Amay JBandodkar Hanul Min Suk‑Won Hwang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期417-417,共1页
Due to typesetting mistake,Hanul Min was missed to be denoted as a corresponding author in the article.The type-setter apologizes for this.The original article has been corrected.Open Access This article is licensed u... Due to typesetting mistake,Hanul Min was missed to be denoted as a corresponding author in the article.The type-setter apologizes for this.The original article has been corrected.Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder. 展开更多
关键词 CREATIVE ELASTIC HIGHLY
下载PDF
Highly Elastic,Bioresorbable Polymeric Materials for Stretchable,Transient Electronic Systems
2
作者 Jeong‑Woong Shin Dong‑Je Kim +12 位作者 Tae‑Min Jang Won Bae Han Joong Hoon Lee Gwan‑Jin Ko Seung Min Yang Kaveti Rajaram Sungkeun Han Heeseok Kang Jun Hyeon Lim Chan‑Hwi Eom Amay J.Bandodkar Hanul Min Suk‑Won Hwang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期1-13,共13页
Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very lim... Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very limited compared to nontransient counterparts.Here,we introduce a bioresorbable elastomer,poly(glycolide-co-ε-caprolactone)(PGCL),that contains excellent material properties including high elongation-at-break(<1300%),resilience and toughness,and tunable dissolution behaviors.Exploitation of PGCLs as polymer matrices,in combination with conducing polymers,yields stretchable,conductive composites for degradable interconnects,sensors,and actuators,which can reliably function under external strains.Integration of device components with wireless modules demonstrates elastic,transient electronic suture system with on-demand drug delivery for rapid recovery of postsurgical wounds in soft,time-dynamic tissues. 展开更多
关键词 Biodegradable elastomer Conductive polymer composites Biomedical device Transient electronics
下载PDF
MF2-DMTD: A Formalism and Game-Based Reasoning Framework for Optimized Drone-Type Moving Target Defense
3
作者 Sang Seo Jaeyeon Lee +2 位作者 Byeongjin Kim Woojin Lee Dohoon Kim 《Computers, Materials & Continua》 SCIE EI 2023年第11期2595-2628,共34页
Moving-target-defense(MTD)fundamentally avoids an illegal initial compromise by asymmetrically increasing the uncertainty as the attack surface of the observable defender changes depending on spatial-temporal mutation... Moving-target-defense(MTD)fundamentally avoids an illegal initial compromise by asymmetrically increasing the uncertainty as the attack surface of the observable defender changes depending on spatial-temporal mutations.However,the existing naive MTD studies were conducted focusing only on wired network mutations.And these cases have also been no formal research on wireless aircraft domains with attributes that are extremely unfavorable to embedded system operations,such as hostility,mobility,and dependency.Therefore,to solve these conceptual limitations,this study proposes normalized drone-type MTD that maximizes defender superiority by mutating the unique fingerprints of wireless drones and that optimizes the period-based mutation principle to adaptively secure the sustainability of drone operations.In addition,this study also specifies MF2-DMTD(model-checkingbased formal framework for drone-type MTD),a formal framework that adopts model-checking and zero-sum game,for attack-defense simulation and performance evaluation of drone-type MTD.Subsequently,by applying the proposed models,the optimization of deceptive defense performance of drone-type MTD for each mutation period also additionally achieves through mixed-integer quadratic constrained programming(MIQCP)and multiobjective optimization-based Pareto frontier.As a result,the optimal mutation cycles in drone-type MTD were derived as(65,120,85)for each control-mobility,telecommunication,and payload component configured inside the drone.And the optimal MTD cycles for each swarming cluster,ground control station(GCS),and zone service provider(ZSP)deployed outside the drone were also additionally calculated as(70,60,85),respectively.To the best of these authors’knowledge,this study is the first to calculate the deceptive efficiency and functional continuity of the MTD against drones and to normalize the trade-off according to a sensitivity analysis with the optimum. 展开更多
关键词 Moving-target-defense(MTD) DRONE formal methods game theory
下载PDF
IoTFLiP: IoT-based flipped learning platform for medical education
4
作者 Maqbool Ali Hafiz Syed Muhammad Bilal +7 位作者 Muhammad Asif Razzaq Jawad Khan Sungyoung Lee Muhammad Idris Mohammad Aazam Taebong Choi Soyeon Caren Han Byeong Ho Kang 《Digital Communications and Networks》 SCIE 2017年第3期188-194,共7页
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部