期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Protective behavior of an SO_2/CO_2 gas mixture for molten AZ91D alloy 被引量:1
1
作者 Liang Weizhong Gao Qiu +2 位作者 Chen Fu Liu Honghui Zhao Zhenhua 《China Foundry》 SCIE CAS 2012年第3期226-230,共5页
The protective behavior for a molten AZ91D alloy in an open melting furnace was investigated under a protective gas mixture containing 3% SO2 and 97% CO2, and the protection mechanism was discussed. Experimental resul... The protective behavior for a molten AZ91D alloy in an open melting furnace was investigated under a protective gas mixture containing 3% SO2 and 97% CO2, and the protection mechanism was discussed. Experimental results show that the gas mixture provides effective protection for AZ91D melt in the temperature range from 680 oC to 730 oC. The microstructure, chemical composition and phase composition of the surface film formed on the molten AZ91D alloy were analyzed using scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The SEM results demonstrate that the surface films with an average thickness between 0.5 μm and 2 μm are dense and coherent in the protected temperature range. The EDS results reveal that the surface film mainly contains elements S, C, O, Al and Mg. The XRD results show that the surface film consists of MgO, MgS and a small amount of C phase. 展开更多
关键词 AZ91D镁合金 混合气体保护 二氧化硫 二氧化碳 熔融 行为 AZ91D合金 表面保护膜
下载PDF
Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster 被引量:1
2
作者 李鸿 刘星宇 +4 位作者 高志勇 丁永杰 魏立秋 于达仁 王晓钢 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第12期96-106,共11页
Propellant gas flow has an important impact on the ionization and acceleration process of Hall effect thrusters (HETs). In this paper, a particle-in-cell numerical method is used to study the effect of the anode tem... Propellant gas flow has an important impact on the ionization and acceleration process of Hall effect thrusters (HETs). In this paper, a particle-in-cell numerical method is used to study the effect of the anode temperature, i.e., the flow speed of the propellant gas, on the discharge characteristics of a HET. The simulation results show that, no matter the magnitude of the discharge voltage, the calculated variation trends of performance parameters with the anode temperature are in good agreement with the experimental ones presented in the literature. Further mechanism analysis indicates that the magnitude of the electron temperature is responsible for the two opposing variation laws found under different discharge voltages. When the discharge voltage is low, the electron temperature is low, and so is the intensity of the propellant ionization; the variation of the thruster performance with the anode temperature is thereby determined by the variation of the neutral density that affects the propellant utilization efficiency. When the discharge voltage is high, the electron temperature is large enough to guarantee a high degree of the propellant utilization no matter the magnitude of the anode temperature. The change of the thruster performance with the anode temperature is thus dominated by the change of the electron temperature and consequently the electron-neutral collisions as well as the electron cross-field mobility that affect the current utilization efficiency. 展开更多
关键词 Hall effect thruster anode temperature neutral flow discharge characteristics particle-in-cell simulation
下载PDF
Microstructure and elevated-temperature tensile properties of differential pressure sand cast Mg-4Y-3Nd-0.5Zr alloy 被引量:1
3
作者 Hong-hui Liu Zhi-liang Ning +4 位作者 Hai-chao Sun Fu-yang Cao Hao Wang Xin-yi Zhao Jian-fei Sun 《China Foundry》 SCIE 2016年第1期30-35,共6页
The microstructures of an Mg-4Y-3Nd-0.5Zr alloy by differential pressure casting were investigated using scanning electron microscopy(SEM) and transmission electron microscopy(TEM), and its tensile deformation behavio... The microstructures of an Mg-4Y-3Nd-0.5Zr alloy by differential pressure casting were investigated using scanning electron microscopy(SEM) and transmission electron microscopy(TEM), and its tensile deformation behavior was measured using a Gleeble1500 D themo-simulation machine in the temperature range of 200 to 400 °C at initial strain rates of 5×10-4 to 10-1 s-1. Results show that the as-cast microstructure consists of primary α-Mg phase and bone-shaped Mg5 RE eutectic phase distributed along the grain boundary. The eutectic phase is dissolved into the matrix after solution treatment and subsequently precipitates during peak aging. Tensile deformation tests show that the strain rate has little effect on stress under 300 °C. Tensile stress decreases with an increase in temperature and the higher strain rate leads to an increase in stress above 300 °C. The fracture mechanism exhibits a mixed quasi-cleavage fracture at 200 °C, while the fracture above 300 °C is a ductile fracture. The dimples are melted at 400 °C with the lowest strain rate of 10-4 s-1. 展开更多
关键词 Mg-4Y-3Nd-0.5Zr alloy MICROSTRUCTURE mechanical property at elevated temperature fracture
下载PDF
Effect of dilution holes on the performance of a triple swirler combustor 被引量:13
4
作者 Ding Guoyu He Xiaomin +3 位作者 Zhao Ziqiang An Bokun Song Yaoyu Zhu Yixiao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1421-1429,共9页
A triple swirler combustor is considered to be a promising solution for future high temperature rise combustors. The present paper aims to study dilution holes including primary dilution holes and secondary dilution h... A triple swirler combustor is considered to be a promising solution for future high temperature rise combustors. The present paper aims to study dilution holes including primary dilution holes and secondary dilution holes on the performance of a triple swirler combustor. Experimental investigations are conducted at different inlet airflow velocities(40–70 m/s) and combustor overall fuel–air ratio with fixed inlet airflow temperature(473 K) and atmospheric pressure. The experimental results show that the ignition is very difficult with specific performance of high ignition fuel–air ratio when the primary dilution holes are located 0.6H(where H is the liner dome height)downstream the dome, while the other four cases have almost the same ignition performance. The position of primary dilution holes has an effect on lean blowout stability and has a large influence on combustion efficiency. The combustion efficiency is the highest when the primary dilution holes are placed 0.9H downstream the dome among the five different locations.For the secondary dilution holes, the pattern factor of Design A is better than that of Design B. 展开更多
关键词 Combustor performance Fuel–air ratio Primary dilution holes Secondary dilution holes Triple swirler combustor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部