期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Entropy Production Analysis for Hump Characteristics of a Pump Turbine Model 被引量:5
1
作者 LI Deyou GONG Ruzhi +3 位作者 WANG Hongjie XIANG Gaoming WEI Xianzhu QIN Daqing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期803-812,共10页
The hump characteristic is one of the main problems for the stable operation of pump turbines in pump mode.However,traditional methods cannot reflect directly the energy dissipation in the hump region.In this paper,3D... The hump characteristic is one of the main problems for the stable operation of pump turbines in pump mode.However,traditional methods cannot reflect directly the energy dissipation in the hump region.In this paper,3D simulations are carried out using the SST k-ω turbulence model in pump mode under different guide vane openings.The numerical results agree with the experimental data.The entropy production theory is introduced to determine the flow losses in the whole passage,based on the numerical simulation.The variation of entropy production under different guide vane openings is presented.The results show that entropy production appears to be a wave,with peaks under different guide vane openings,which correspond to wave troughs in the external characteristic curves.Entropy production mainly happens in the runner,guide vanes and stay vanes for a pump turbine in pump mode.Finally,entropy production rate distribution in the runner,guide vanes and stay vanes is analyzed for four points under the 18 mm guide vane opening in the hump region.The analysis indicates that the losses of the runner and guide vanes lead to hump characteristics.In addition,the losses mainly occur in the runner inlet near the band and on the suction surface of the blades.In the guide vanes and stay vanes,the losses come from pressure surface of the guide vanes and the wake effects of the vanes.A new insight-entropy production analysis is carried out in this paper in order to find the causes of hump characteristics in a pump turbine,and it could provide some basic theoretical guidance for the loss analysis of hydraulic machinery. 展开更多
关键词 fluid machinery pump turbine entropy production hump characteristics loss
下载PDF
High-amplitude pressure fluctuations of a pump-turbine with large head variable ratio during the turbine load rejection process 被引量:1
2
作者 FU XiaoLong LI DeYou +2 位作者 SONG YeChen WANG HongJie WEI XianZhu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第9期2575-2585,共11页
Large-head variable-amplitude pump turbines(PTs) encounter serious transient hydraulic instability issues. To explore the evolution mechanisms of pressure fluctuations(PFs) and flow patterns inside large-head variable... Large-head variable-amplitude pump turbines(PTs) encounter serious transient hydraulic instability issues. To explore the evolution mechanisms of pressure fluctuations(PFs) and flow patterns inside large-head variable-amplitude PTs, the load rejection process(LRP) was investigated using a one-and three-dimensional coupled flow simulation approach. The temporal,spatial, and frequency characteristics of the fluctuating pressures were analyzed for four monitoring points using a combined time-frequency analysis approach. The results indicated that PFs during the LRP of large-head variable-amplitude PTs had a new fluctuation frequency component related to Dean vortices(DVs) in the volute, in addition to the common fluctuation frequency components related to rotor-stator interaction phenomena and local backflow vortices near the impeller inlet. The PF frequency component existed throughout the LRP and had a significant influence on the transient maximum pressure at the volute end. This study provides a useful theoretical guide for the design and optimization of large-head variable-amplitude PTs. 展开更多
关键词 large-head variable-amplitude pump turbine load rejection process 1D-3D flow simulation pressure fluctuation flow pattern evolution
原文传递
Flow excitation mechanisms of unbalanced impeller forces after pump power-trip of ultra-high head pump-turbines
3
作者 FU XiaoLong LI DeYou +3 位作者 LV JingWei YANG Biao WANG HongJie WEI XianZhu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第5期1602-1611,共10页
To elucidate the dynamic mechanisms of unbalanced impellers in ultra-high head pump-turbines(PTs),this study employed a one-and three-dimensional coupled method to simulate the pump power-trip(PPT)process of an ultra-... To elucidate the dynamic mechanisms of unbalanced impellers in ultra-high head pump-turbines(PTs),this study employed a one-and three-dimensional coupled method to simulate the pump power-trip(PPT)process of an ultra-high head PT.The investigation revealed two novel pulsation frequency components,denoted as fDVand fINFT,associated with impeller forces.The pulsation intensities of these components were markedly higher than those of rotor-stator interaction frequency components in ultra-high head PTs.Notably,the fDVcomponents exhibited pulsations at 1–2 times the rated rotation frequency of the impeller,spanning the entire transition period.Meanwhile,the fINFTcomponents constituted a complex frequency band with various frequency values,primarily occurring near conditions(Q=0,n=0,M=0,and d M/dt=0).These two pulsation frequency components were predominantly linked to the unsteady evolution of dean vortices inside the volute and complex transitions of the flow pattern within the impeller,respectively.It is crucial to note that these unbalanced flow-induced impeller axial forces can elevate the risk of accidents where the rotor is subjected to significant upwind axial forces.These findings offer valuable insights into mitigating the risk of rotor lifting due to axial forces during PT events in ultra-high head PTs. 展开更多
关键词 ultra-high head pump-turbine pump power-trip unbalanced impeller forces pressure pulsations flow pattern transitions
原文传递
600 Mesh Silicon Carbide Corona Protection Varnish with EPOXY/OMMT Nano-composite Adhesive
4
作者 胡春秀 ZHAO Yingnan +1 位作者 HOU Haibo ZHANG Xiaohong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第4期818-822,共5页
A new corona protection varnish was prepared by using epoxy/montmorillonite nanocomposite and pure epoxy resin as adhesives respectively.The adhesive with different amounts of organic montmorillonite(OMMT) was mixed... A new corona protection varnish was prepared by using epoxy/montmorillonite nanocomposite and pure epoxy resin as adhesives respectively.The adhesive with different amounts of organic montmorillonite(OMMT) was mixed with 1200 mesh silicon carbide(Si C) by different weight ratios.The surface states of the varnishes with various adhesives were observed by powerful optical microscope.Some properties of the varnishes were analyzed during the enduring time under 5kV/cm DC,such as the relation of change in nonlinear coefficient,natural surface resistivity,and surface temperature variation.The results showed that the amounts of OMMT had little effect on the natural surface resistance of the varnish but had important influence on the nonlinear property of the varnish.When the range of the OMMT content was 2wt% to 6wt%,the nonlinear coefficient of all materials with epoxy/OMMT nano-composite adhesive was higher than that with pure epoxy resin adhesive.The surface temperature of the varnish with epoxy/OMMT nanocomposite adhesive was all lower than that with the pure epoxy resin adhesive under high electrical field strength. 展开更多
关键词 adhesive epoxy Corona resin carbide spacing paint polyester fluctuation powerful
下载PDF
Application of entropy production theory to hydro-turbine hydraulic analysis 被引量:16
5
作者 GONG RuZhi WANG HongJie +3 位作者 CHEN LiXia LI DeYou ZHANG HaoChun WEI XianZhu 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第7期1636-1643,共8页
The understanding of hydraulic behavior in the hydro turbine requires the detailed study of fluid flow in the turbine. Previous methods of analyzing the numerical simulation results on the fluid machinery are short of... The understanding of hydraulic behavior in the hydro turbine requires the detailed study of fluid flow in the turbine. Previous methods of analyzing the numerical simulation results on the fluid machinery are short of intuitiveness on energy dissipation.In this paper, the energy dissipation was analyzed based on the entropy production theory. 3-D steady flow simulations and entropy production calculations of the reduced hydro turbine were carried out. The results indicated that the entropy production theory was suitable for evaluating the performance of the hydro turbine. The energy dissipation in the guide vanes area weighted nearly 25% of the whole flow passage, and mainly happened at the head and tail areas of the vanes. However, more than half the energy dissipation occurred in the runner, mostly at the leading edge of runner blade and the trailing edge of run-ner blade. Meanwhile, close to 20% of the energy dissipation occurred in the elbow. And it can be concluded that the method of entropy production analysis has the advantages of determining the quantity of energy dissipation and where the dissipation happens. 展开更多
关键词 FLUID MACHINERY HYDRO TURBINE ENTROPY production energy DISSIPATION
原文传递
Numerical investigation on the “S” characteristics of a reduced pump turbine model 被引量:20
6
作者 WANG LeQin YIN JunLian +2 位作者 JIAO Lei WU DaZhuan QIN DaQing 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第5期1259-1266,共8页
The performance of a reversible pump turbine with S-shaped characteristics is of great importance to the transition processes such as start-up and load rejection. In order to predict the S-shaped curve accurately and ... The performance of a reversible pump turbine with S-shaped characteristics is of great importance to the transition processes such as start-up and load rejection. In order to predict the S-shaped curve accurately and develop a reliable tool for design improvement, a shear stress transport model (SST) with various numerical schemes for pressure term in the governing equation was investigated in a whole pump turbine including spiral casing, stay vanes, guide vanes, runner and draft tube. Through the computation, it was shown that different zones in the curve should employ different schemes to get the solution converged. Comparison of discharge-speed performance showed that good correspondence is got between experimental data and CFD results. Based on this, internal flow analysis was carried out at three typical operating points representing turbine mode, shut-off mode and reversible pump mode, respectively. According to the flow field concerned, the mechanism for the speed-no-load instability was explained, which provides good guidelines to take countermeasures in future design. 展开更多
关键词 pump turbine flow simulation SST k-co turbulence mode S-shaped curve
原文传递
Dynamic instability of a pump-turbine in load rejection transient process 被引量:7
7
作者 FU XiaoLong LI DeYou +3 位作者 WANG HongJie ZHANG GuangHui Li ZhengGui WEI XianZhu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第11期1765-1775,共11页
Load rejection is one of the most crucial transient processes in pump-turbines. However, only a few achievements on the internal flow mechanism of pump-turbines in load rejection processes have been presented. In this... Load rejection is one of the most crucial transient processes in pump-turbines. However, only a few achievements on the internal flow mechanism of pump-turbines in load rejection processes have been presented. In this study, firstly, the load rejection process in a pump-turbine was simulated with a three-dimensional unsteady turbulent numerical method using the technology of dynamic mesh and the user-defined functions in the FLUENT software. The rotational speed predicted through numerical simulation agrees well with experimental data. Secondly, based on numerical simulations, a dynamic instability in the load rejection process was found and presented that the pressure and performance characteristics, including hydraulic torque on the runner and the discharge, fluctuate in the overall trend. Meanwhile, all the performance characteristics and the pressure fluctuate sharply near the operating condition points, where hydraulic torque on the runner is equal to zero or reverse flow is maximum at reverse pump conditions. Finally, the time-frequency features and formation mechanism of the dynamic instability were analyzed emphatically. The analysis of the internal flow in the pump-turbine reveals that dynamic instability in the load rejection process are mainly caused by the vortex flow in the tandem cascades regions. Furthermore, the possible methods to improve the dynamic instability in the load rejection process were recommended. 展开更多
关键词 PUMP-TURBINE LOAD REJECTION process DYNAMIC INSTABILITY NUMERICAL simulation
原文传递
Hydraulic fluctuations during the pump power-off runaway transient process of a pump turbine with consideration of cavitation effects 被引量:5
8
作者 Xiao-long Fu De-you Li +2 位作者 Hong-jie Wang Yong-guang Cheng Xian-zhu Wei 《Journal of Hydrodynamics》 SCIE EI CSCD 2021年第6期1162-1175,共14页
A runaway transition after the pump power interruption and the simultaneous guide vane servomotor failure is one of the most dangerous and complex transitions for a pumped storage power system(PSPS).This paper analyze... A runaway transition after the pump power interruption and the simultaneous guide vane servomotor failure is one of the most dangerous and complex transitions for a pumped storage power system(PSPS).This paper analyzes the fluctuation behavior and mechanism of a PSPS during a runaway transition caused by the pump power interruption.The transient cavitation flow in the PSPS is simulated by using a one-dimensional and three-dimensional coupling flow simulation method for the runaway transition.Subsequently,the effects of the transient fluctuation of the radial hydraulic thrust on the runner and transient pressures are analyzed using the short-time Fourier transform method.Finally,the mechanisms are analyzed based on the analysis of the internal flow field.This study suggests that the extreme fluctuation generally occurs near the critical transformation points between the two operation modes.In addition,the extreme fluctuation behavior is primarily related to the local backflow near the runner inlet and the unstable cavitation phenomena in the runner and the draft tube.This finding helps for optimizing the runner design to resolve the instability problems of a PSPS. 展开更多
关键词 Pumped storage power system pump power-off runaway transient fluctuation behavior local backflow CAVITATION
原文传递
Three-Dimensional Simulation of Unsteady Flow in a Model Francis Hydraulic Turbine 被引量:4
9
作者 邵奇 刘树红 +2 位作者 吴玉林 吴伟章 陶星明 《Tsinghua Science and Technology》 SCIE EI CAS 2004年第6期694-699,共6页
For Francis hydraulic turbines, unsteady flow caused by vortex ropes in the draft tube leads to a problem of stability in operation. The unsteady flow field of a model Francis hydraulic turbine was simulated under par... For Francis hydraulic turbines, unsteady flow caused by vortex ropes in the draft tube leads to a problem of stability in operation. The unsteady flow field of a model Francis hydraulic turbine was simulated under part-load operation. A sliding mesh model was used to calculate a time-accurate solution for the strong rotor-stator interactions between the runner and guide vanes, and the draft tube. Based on three-dimensional incompressible Reynolds averaged Navier-Stokes equations and on a renormalization group k-?turbulence model, spatial discretization was obtained by using the finite volume method with unstructured grid elements, and a second order fully implicit scheme was applied for time. Pressure fluctuations in the draft tube were recorded and analyzed via a fast Fourier transform calculation. The results were compared with the experimental data, and show that the vortex rope in the draft tube and the induced pressure fluctuations are well simulated. 展开更多
关键词 computer simulation rotor-stator interaction unsteady flow vortex rope Francis hydraulic turbine
原文传递
Investigation on the relationship between hydraulic loss and vortex evolution in pump mode of a pump-turbine 被引量:5
10
作者 Yong-lin Qin De-you Li +3 位作者 Hong-jie Wang Zhan-sheng Liu Xian-zhu Wei Xiao-hang Wang 《Journal of Hydrodynamics》 SCIE EI CSCD 2022年第4期555-569,共15页
Hydraulic loss and vorticity are two most common methods in analyzing the flow characteristics in hydro-machine,i.e.,centrifugal pump,Francis turbine,etc.While the relationship and correlation between hydraulic loss a... Hydraulic loss and vorticity are two most common methods in analyzing the flow characteristics in hydro-machine,i.e.,centrifugal pump,Francis turbine,etc.While the relationship and correlation between hydraulic loss and vortex evolution are not uncovered yet.In this study,hydraulic loss is regarded as the combination of dissipation effect and transportation effect in flow domains.Meanwhile,vorticityωcan be decomposed into two parts,namely the Liutex partω_(R),the shear partωs,of whichω_(R)is regarded as the third-generation vortex identification method for its precise and rigorous definition of local rigid rotation part of fluid.Based on the dimensional analysis,two new physical quantities related to vorticity(ω,ω_(R)andωS),namely enstrophyΩ,vorticity transport intensity T are adopted to express the energy characteristic in vortex evolution process.Finally,operating points at pump mode of an ultra-high head reversible pump-turbine are selected as the research object and the numerical results calculated using SST k-ωturbulence model are consistent well with the experimental data.Pearson correlation coefficient is adopted to evaluate the correlation between hydraulic loss and vortex evolution in main flow regions.Results show that apart from the spiral casing domain,the enstrophy of shear partΩs has very strong correlation with dissipation effect and Liutex transport intensity TR has stronger correlation with transportation effect when compared with other forms of vorticity.The correlation between Liutex transport intensity TR and transportation effect is strong in stay/guide vanes(SGVs)while reduce to medium level in runner and draft tube domains.In spiral casing domain,all forms of vorticity show weak or very weak correlation with transportation effect.Based on the proposed method,we believe that the relationship and correlation between hydraulic loss and vortex evolution in other hydraulic machineries can also be clearly investigated. 展开更多
关键词 Hydraulic loss ENSTROPHY vorticity transportation pearson correlation coefficient
原文传递
Dynamic analysis on pressure fluctuation in vaneless region of a pump turbine 被引量:6
11
作者 LI DeYou GONG RuZhi +3 位作者 WANG HongJie XIANG GaoMing WEI XianZhu LIU ZhanSheng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第5期813-824,共12页
As the pump turbine tends to be operated with high head and high rotational speed, the study of stability problems becomes more important. The pump turbine usually works at operating conditions where the guide vanes e... As the pump turbine tends to be operated with high head and high rotational speed, the study of stability problems becomes more important. The pump turbine usually works at operating conditions where the guide vanes experience strong vibrations. However, most traditional studies were carried out based on constant GVO(guide vane opening) simulations. In this work, dynamic analysis on pressure fluctuation in the vaneless region of a pump turbine model was conducted using a dynamic mesh method in turbine mode. 3D unsteady simulations were conducted where GVO was closed and opened by 1° from the initial 18°. Detailed time domain and frequency domain characteristics on pressure fluctuation in the vaneless region under different guide vane rotational states compared with constant GVO simulations were investigated. Results show that, during the guide vanes oscillating process, the low and intermediate frequency components in the vaneless region are significantly different. The amplitudes of pressure fluctuation are higher than those with constant GVO simulations, which agree better with the experimental data. In addition, the pressure fluctuation increases when GVO is opened, and vice versa. It can be concluded that pressure fluctuation in the vaneless region is strongly influenced by the oscillating of the guide vanes. 展开更多
关键词 fluctuation turbine agree unsteady listed operated opened creased Figure inlet
原文传递
Flow Stress Model of Stainless Steel 0Cr13Ni5Mo at Elevated Temperature 被引量:1
12
作者 董万鹏 陈军 李文君 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第6期717-720,共4页
For a more accurate forming calculation and numerical simulation of hydraulic turbine blade, ex- perimental studies on the flow stress of stainless steel 0Crl3Ni5Mo were carried out upon Gleeble-1500 thermal simulator... For a more accurate forming calculation and numerical simulation of hydraulic turbine blade, ex- perimental studies on the flow stress of stainless steel 0Crl3Ni5Mo were carried out upon Gleeble-1500 thermal simulator under different deformation conditions. The results then were analyzed and the effects of all influencing factors were summarized consequently. New mathematic models were conceived. Utilizing the software Matlab, regression coefficients were calculated by the least square method. The model has an eminent capability of curve-fitting performance with impact structure whose correlation coefficient is up to 0.908 0 and the cosine coefficient is 0.995 8. All mathematic models and process parameters can be used in engineering calculations or computer simulations. 展开更多
关键词 flow stress 0Crl3Ni5Mo least square method influence coefficient method mathematic model
原文传递
Investigation on reversible pump turbine flow structures and associated pressure field characteristics under different guide vane openings 被引量:5
13
作者 BINAMA Maxime SU WenTao +5 位作者 CAI WeiHua LI FengChen WEI XianZhu MUHIRWA Alex GONG RuZhi WEKESA David W 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第11期2052-2074,共23页
The use of reversible pump turbines(RPT) within pumped storage power plants goes with prolonged periods of off-design operating conditions, which leads to the onset of operating mode-dependent instabilities. In order ... The use of reversible pump turbines(RPT) within pumped storage power plants goes with prolonged periods of off-design operating conditions, which leads to the onset of operating mode-dependent instabilities. In order to decrease the gravity of RPT flow instabilities and associated damages or even completely eliminate them, a deep understanding of its onset and development mechanism is needed. In line with this, the present study seeks to numerically investigate the onset and development mechanism of RPT unsteady flow structures as well as the evolutional characteristics of associated pressure pulsations throughout the RPT complete flow passage, under off-design conditions for three GVOs namely 17, 21, and 25 mm. The study results showed that low torque operating conditions and associated vaneless space back flow structures were the trigger of flow unsteadiness onset within the RPT vaneless space, the instabilities which grew to cause the S-shape characteristics appearance. Moreover, the runner flow unsteadiness was found to decrease with the GVO increase. On the other hand, the GVO increase worsened the pressure pulsation levels within RPT flow zones, where pressure pulsations within the vaneless space and flow zones in its vicinities were found to be the most sensitive to GVO changes. 展开更多
关键词 REVERSIBLE PUMP-TURBINE flow UNSTEADINESS pressure PULSATION guide VANE OPENING numerical simulation
原文传递
给定活动导叶开口水泵水轮机模型泵工况驼峰现象流动分析(英文) 被引量:2
14
作者 De-you LI Ru-zhi GONG +3 位作者 Hong-jie WANG Wen-wen FU Xian-zhu WEI Zhan-sheng LIU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2015年第11期851-863,共13页
目的:探索水泵水轮机泵工况在超负荷工况(1.24φBEP)、最优工况(1.00φBEP)、靠近最优工况(0.90φBEP)、驼峰区工况(0.65φBEP)以及低负荷工况(0.45φBEP)的流动特性,期望获得流动特性变化规律,揭示驼峰特性形成机理。方法:对某一水泵... 目的:探索水泵水轮机泵工况在超负荷工况(1.24φBEP)、最优工况(1.00φBEP)、靠近最优工况(0.90φBEP)、驼峰区工况(0.65φBEP)以及低负荷工况(0.45φBEP)的流动特性,期望获得流动特性变化规律,揭示驼峰特性形成机理。方法:对某一水泵水轮机模型,采用剪切压力传输(SST)k-ω湍流模型进行三维定常数值模拟,在实验验证的基础上:1.在曲面坐标系中,分析由叶片形状所引起的各个工况叶片进出口边在周向和叶片方向上的分布规律;2.运用经典欧拉理论分析叶片进出口边液流角变化对各个工况的欧拉水头的影响;3.通过水力损失分析,获得不同部件各个工况损失变化规律。结论:1.转轮叶片进出水边的液流角随着叶片方向在不同流量工况分布下具有明显差异,导致转轮流道不同程度流动分离;2.运用经典欧拉理论得出驼峰区工况点出口角液流的减小与入口液流的增加是驼峰特性产生的主要原因之一;3.通过损失分析,确定泵工况损失主要在转轮和双列叶栅中,得出转轮部分损失是驼峰特性形成的主要原因之一;4.综合分析,驼峰特性是由该工况欧拉动量的减小和转轮部分损失的增加共同作用的结果。 展开更多
关键词 水泵水轮机 流动分析 液流角 水力损失 驼峰区
原文传递
Runner cone optimization to reduce vortex rope-induced pressure fluctuations in a Francis turbine 被引量:1
15
作者 LI DeYou YU Liang +3 位作者 YAN XuYu WANG HongJie SHI Qian WEI XianZhu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第9期1953-1970,共18页
Pressure fluctuations induced by a vortex rope are the major causes of hydraulic turbine vibration in partial load operating conditions. Hence, an effective control strategy should be adopted to improve rotating chara... Pressure fluctuations induced by a vortex rope are the major causes of hydraulic turbine vibration in partial load operating conditions. Hence, an effective control strategy should be adopted to improve rotating characteristics of the vortex rope and reduce the corresponding pressure fluctuation. In this study, two new types of runner cones(i.e., abnormally shaped and long straight cones) were proposed to optimize the pressure distribution in the draft tube, and unsteady numerical simulations were performed to determine their mechanism of action. Numerical results were validated using flow observation and pressure fluctuation experiments. Detailed analyses were conducted to understand the effects of the helical vortex rope operating conditions. The results indicated that pressure fluctuations in the draft tube at partial load operation result primarily from low frequency fluctuations induced by the rotation of the helical vortex rope, whose amplitudes are related to the rotating radius of the helical vortex rope. Both runner cone types could effectively reduce the pressure-fluctuation amplitude. The long straight type could reduce the amplitude of low-frequency fluctuation induced by vortex rope to a maximum of 74.08% and the abnormalshape type to 38.31%. Thus, the effective optimization of the runner cone can potentially reduce pressure-fluctuation amplitudes.Our research findings were applied to a real hydraulic plant in China. 展开更多
关键词 Francis turbine vortex rope runner cone optimization low frequency fluctuation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部