Gene innovation plays an essential role in trait evolution.Rhizobial symbioses,the most important N2-fixing agent in agricultural systems that exists mainly in Leguminosae,is one of the most attractive evolution event...Gene innovation plays an essential role in trait evolution.Rhizobial symbioses,the most important N2-fixing agent in agricultural systems that exists mainly in Leguminosae,is one of the most attractive evolution events.However,the gene innovations underlying Leguminosae root nodule symbiosis(RNS)remain largely unknown.Here,we investigated the gene gain event in Leguminosae RNS evolution through comprehensive phylogenomic analyses.We revealed that Leguminosae-gain genes were acquired by gene duplication and underwent a strong purifying selection.Kyoto Encyclopedia of Genes and Genomes analyses showed that the innovated genes were enriched in flavonoid biosynthesis pathways,particular downstream of chalcone synthase(CHS).Among them,Leguminosae-gain typeⅡchalcone isomerase(CHI)could be further divided into CHI1A and CHI1B clades,which resulted from the products of tandem duplication.Furthermore,the duplicated CHI genes exhibited exon–intron structural divergences evolved through exon/intron gain/loss and insertion/deletion.Knocking down CHI1B significantly reduced nodulation in Glycine max(soybean)and Medicago truncatula;whereas,knocking down its duplication gene CHI1A had no effect on nodulation.Therefore,Leguminosae-gain typeⅡCHI participated in RNS and the duplicated CHI1A and CHI1B genes exhibited RNS functional divergence.This study provides functional insights into Leguminosae-gain genetic innovation and sub-functionalization after gene duplication that contribute to the evolution and adaptation of RNS in Leguminosae.展开更多
基金The National Natural Science Foundation of China(grant nos.32388201,32300512 and U22A20467)“Strategic Priority Research Program”of the Chinese Academy of Sciences(grant no.XDA24030501)+1 种基金CAS Project for Young Scientists in Basic Research(YSBR-078)the Xplorer Prize。
文摘Gene innovation plays an essential role in trait evolution.Rhizobial symbioses,the most important N2-fixing agent in agricultural systems that exists mainly in Leguminosae,is one of the most attractive evolution events.However,the gene innovations underlying Leguminosae root nodule symbiosis(RNS)remain largely unknown.Here,we investigated the gene gain event in Leguminosae RNS evolution through comprehensive phylogenomic analyses.We revealed that Leguminosae-gain genes were acquired by gene duplication and underwent a strong purifying selection.Kyoto Encyclopedia of Genes and Genomes analyses showed that the innovated genes were enriched in flavonoid biosynthesis pathways,particular downstream of chalcone synthase(CHS).Among them,Leguminosae-gain typeⅡchalcone isomerase(CHI)could be further divided into CHI1A and CHI1B clades,which resulted from the products of tandem duplication.Furthermore,the duplicated CHI genes exhibited exon–intron structural divergences evolved through exon/intron gain/loss and insertion/deletion.Knocking down CHI1B significantly reduced nodulation in Glycine max(soybean)and Medicago truncatula;whereas,knocking down its duplication gene CHI1A had no effect on nodulation.Therefore,Leguminosae-gain typeⅡCHI participated in RNS and the duplicated CHI1A and CHI1B genes exhibited RNS functional divergence.This study provides functional insights into Leguminosae-gain genetic innovation and sub-functionalization after gene duplication that contribute to the evolution and adaptation of RNS in Leguminosae.