期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于机器学习的氮掺杂石墨炔力学性能预测 被引量:1
1
作者 张存 杨博林 +1 位作者 彭志龙 陈少华 《Science China Materials》 SCIE EI CAS CSCD 2024年第4期1129-1139,共11页
氮掺杂γ-石墨二炔(N-GDY)因其在能源、电子元器件和催化领域具有重要应用前景而备受关注.研究表明,N-GDY在不同的氮掺杂情况下会表现出迥异的物理化学性质.由于氮掺杂的多样性,N-GDY的理论及应用研究受到了极大的限制.鉴于此,本文采用... 氮掺杂γ-石墨二炔(N-GDY)因其在能源、电子元器件和催化领域具有重要应用前景而备受关注.研究表明,N-GDY在不同的氮掺杂情况下会表现出迥异的物理化学性质.由于氮掺杂的多样性,N-GDY的理论及应用研究受到了极大的限制.鉴于此,本文采用鄂维南等人提出的DeepMD方法训练得到了具有第一性原理精度、适用于N-GDY的机器学习势.利用该机器学习势,系统研究了氮掺杂模式对N-GDY力学性能的影响.研究发现,氮原子掺杂会导致N-GDY的抗拉强度降低.在单个碳链上掺杂氮原子时,N-GDY的抗拉强度随着氮原子掺杂位点到苯环的距离变小而减弱.相邻碳链氮原子共掺杂能够使N-GDY表现出更强的各向异性力学特征.本文研究结果对N-GDY在能源存储和柔性设备等领域的潜在应用提供了理论支持,同时也表明了机器学习势在从大规模数据集中学习并预测碳纳米材料复杂力学性质方面的潜力,为纳米材料设计及工程应用具有重要指导作用. 展开更多
关键词 机器学习 力学性能预测 氮掺杂 碳纳米材料 能源存储 力学特征 第一性原理 电子元器件
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部