期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Development of glioblastoma organoids and their applications in personalized therapy
1
作者 Can Xu Xiaoye Yuan +4 位作者 Pengyu Hou Ziru Li Changsheng Wang Chuan Fang Yanli Tan 《Cancer Biology & Medicine》 SCIE CAS CSCD 2023年第5期353-368,共16页
Glioblastomas(GBMs)are the brain tumors with the highest malignancy and poorest prognoses.GBM is characterized by high heterogeneity and resistance to drug treatment.Organoids are 3-dimensional cultures that are const... Glioblastomas(GBMs)are the brain tumors with the highest malignancy and poorest prognoses.GBM is characterized by high heterogeneity and resistance to drug treatment.Organoids are 3-dimensional cultures that are constructed in vitro and comprise cell types highly similar to those in organs or tissues in vivo,thus simulating specific structures and physiological functions of organs.Organoids have been technically developed into an advanced ex vivo disease model used in basic and preclinical research on tumors.Brain organoids,which simulate the brain microenvironment while preserving tumor heterogeneity,have been used to predict patients’therapeutic responses to antitumor drugs,thus enabling a breakthrough in glioma research.GBM organoids provide an effective supplementary model that reflects human tumors’biological characteristics and functions in vitro more directly and accurately than traditional experimental models.Therefore,GBM organoids are widely applicable in disease mechanism research,drug development and screening,and glioma precision treatments.This review focuses on the development of various GBM organoid models and their applications in identifying new individualized therapies against drug-resistant GBM. 展开更多
关键词 GLIOBLASTOMA ORGANOIDS glioma stem cell drug screening
下载PDF
Temporal and spatial stability of the EM/PM molecular subtypes in adult diffuse glioma
2
作者 Jing Feng Zheng Zhao +20 位作者 Yanfei Wei Zhaoshi Bao Wei Zhang Fan Wu Guanzhang Li Zhiyan Sun Yanli Tan Jiuyi Li Yunqiu Zhang Zejun Duan Xueling Qi Kai Yu Zhengmin Cong Junjie Yang Yaxin Wang Yingyu Sun Fuchou Tang Xiaodong Su Chuan Fang Tao Jiang Xiaolong Fan 《Frontiers of Medicine》 SCIE CSCD 2023年第2期240-262,共23页
Detailed characterizations of genomic alterations have not identified subtype-specific vulnerabilities in adult gliomas. Mapping gliomas into developmental programs may uncover new vulnerabilities that are not strictl... Detailed characterizations of genomic alterations have not identified subtype-specific vulnerabilities in adult gliomas. Mapping gliomas into developmental programs may uncover new vulnerabilities that are not strictly related to genomic alterations. After identifying conserved gene modules co-expressed with EGFR or PDGFRA (EM or PM), we recently proposed an EM/PM classification scheme for adult gliomas in a histological subtype- and grade-independent manner. By using cohorts of bulk samples, paired primary and recurrent samples, multi-region samples from the same glioma, single-cell RNA-seq samples, and clinical samples, we here demonstrate the temporal and spatial stability of the EM and PM subtypes. The EM and PM subtypes, which progress in a subtype-specific mode, are robustly maintained in paired longitudinal samples. Elevated activities of cell proliferation, genomic instability and microenvironment, rather than subtype switching, mark recurrent gliomas. Within individual gliomas, the EM/PM subtype was preserved across regions and single cells. Malignant cells in the EM and PM gliomas were correlated to neural stem cell and oligodendrocyte progenitor cell compartment, respectively. Thus, while genetic makeup may change during progression and/or within different tumor areas, adult gliomas evolve within a neurodevelopmental framework of the EM and PM molecular subtypes. The dysregulated developmental pathways embedded in these molecular subtypes may contain subtype-specific vulnerabilities. 展开更多
关键词 glioma progression molecular classification EM PM subtyping intratumor heterogeneity
原文传递
Blockage of EGFR/AKT and mevalonate pathways synergize the antitumor effect of temozolomide by reprogramming energy metabolism in glioblastoma
3
作者 Xiaoteng Cui Jixing Zhao +15 位作者 Guanzhang Li Chao Yang Shixue Yang Qi Zhan Junhu Zhou Yunfei Wang Menglin Xiao Biao Hong Kaikai Yi Fei Tong Yanli Tan Hu Wang Qixue Wang Tao Jiang Chuan Fang Chunsheng Kang 《Cancer Communications》 SCIE 2023年第12期1326-1353,共28页
Background Metabolism reprogramming plays a vital role in glioblastoma(GBM)progression and recurrence by producing enough energy for highly proliferating tumor cells.In addition,metabolic reprogramming is crucial for ... Background Metabolism reprogramming plays a vital role in glioblastoma(GBM)progression and recurrence by producing enough energy for highly proliferating tumor cells.In addition,metabolic reprogramming is crucial for tumor growth and immune-escape mechanisms.Epidermal growth factor receptor(EGFR)amplification and EGFR-vIII mutation are often detected in GBM cells,contributing to the malignant behavior.This study aimed to investigate the functional role of the EGFR pathway on fatty acid metabolism remodeling and energy generation.Methods Clinical GBM specimens were selected for single-cell RNA sequencing and untargeted metabolomics analysis.A metabolism-associated RTK-fatty acid-gene signature was constructed and verified.MK-2206 and MK-803 were utilized to block the RTK pathway and mevalonate pathway induced abnormal metabolism.Energy metabolism in GBM with activated EGFR pathway was monitored.The antitumor effect of Osimertinib and Atorvastatin assisted by temozolomide(TMZ)was analyzed by an intracranial tumor model in vivo.Results GBM with high EGFR expression had characteristics of lipid remodeling and maintaining high cholesterol levels,supported by the single-cell RNA sequencing and metabolomics of clinical GBM samples.Inhibition of the EGFR/AKT and mevalonate pathways could remodel energy metabolism by repressing the tricarboxylic acid cycle and modulating ATP production.Mechanistically,the EGFR/AKT pathway upregulated the expressions of acyl-CoA synthetase short-chain family member 3(ACSS3),acyl-CoA synthetase long-chain family member 3(ACSL3),and long-chain fatty acid elongation-related gene ELOVL fatty acid elongase 2(ELOVL2)in an NF-κB-dependent manner.Moreover,inhibition of the mevalonate pathway reduced the EGFR level on the cell membranes,thereby affecting the signal transduction of the EGFR/AKT pathway.Therefore,targeting the EGFR/AKT and mevalonate pathways enhanced the antitumor effect of TMZ in GBM cells and animal models.Conclusions Our findings not only uncovered the mechanism of metabolic reprogramming in EGFR-activated GBM but also provided a combinatorial therapeutic strategy for clinical GBM management. 展开更多
关键词 combinatorial therapeutic strategy EGFR energy metabolism GLIOBLASTOMA
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部