期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Maximum Thermodynamic Electrical Efficiency of Fuel Cell System and Results for Hydrogen,Methane,and Propane Fuels
1
作者 Rui-chao Mao Xiao Ru Zi-jing Lin 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第3期325-334,368,共11页
The maximum electrical efficiency of fuel cell system,ηe^max,is important for the understanding and development of the fuel cell technology.Attempt is made to build a theory forηe^max by considering the energy requi... The maximum electrical efficiency of fuel cell system,ηe^max,is important for the understanding and development of the fuel cell technology.Attempt is made to build a theory forηe^max by considering the energy requirement of heating the fuel and air streams to the fuel cell operating temperature T.A general thermodynamic analysis is performed and the energy balances for the overall operating processes of a fuel cell system are established.Explicit expressions for the determination ofηe^max are deduced.Unlike the Carnot efficiency,ηmax e is found to be fuel specific.Except for hydrogen fuel,chemical equilibrium calculations are necessary to computeηe^max.Analytical solutions for the chemical equilibrium of alkane fuels are presented.The theoretical model is used to analyze the effects of T and the steam contents of CH4,C3H8,and H2 onηe^max for systems with various degrees of waste heat recovery.Contrary to the common perception concerning methane and propane fuels,ηe^max decreases substantially with the increase of T.Moreover,ηe^max of hydrogen fuel can be higher than that of methane and propane fuels for a system with a medium level of waste heat recovery and operated at 700℃≤T≤900℃. 展开更多
关键词 Analytical theory Energy BALANCE Nernst potential Fuel utilization ALKANE Chemical EQUILIBRIUM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部