期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Preliminary study on nanopores,nanofissures,and in situ accumulation of Gulong shale oil
1
作者 HE Wenyuan 《地学前缘》 EI CAS CSCD 北大核心 2023年第1期260-280,共21页
The Qingshankou Formation shale oil in the Gulong Sag is an important oil and gas reservoir in the Daqing oilfield,with geological resources of 15.1 billion tons.The fabric of shale can reflect not only its genesis bu... The Qingshankou Formation shale oil in the Gulong Sag is an important oil and gas reservoir in the Daqing oilfield,with geological resources of 15.1 billion tons.The fabric of shale can reflect not only its genesis but also the nature of the reservoir space,its physical properties,oil content,and development value.Here,the characteristics of clay minerals in the Gulong shale oil reservoir were studied via electron microscopy,with the primary focus on the microfabrics and reservoir space;thereafter,the in situ accumulation was studied and discussed.Electron backscattering patterns revealed that nanometer pores and fissures were well developed in the Gulong shale oil reservoir.The nano pores were mostly 20-50 nm in diameter(median 20-30 nm),irregularly shaped,mostly,polygonal,and connected with nanofissures.The widths of nanofissures ranged mostly between 10-50 nm(median 20-30 nm);moreover,these fissures were mainly formed by F-F condensation of clay sheets(clay domains).The coagulation of clays was closely related to organic matter,especially algae.The clay colloids were negatively charged due to isocrystalline replacement;hence,metal cations were absorbed around the clay,forming a positive clay group.The positively charged clays subsequently adsorbed negatively charged humic acid(organic matter)and initially degraded algae to form an organic clay flocculant.When the organic clay flocculates reached the threshold for hydrocarbon generation and expulsion,the volume of organic matter decreased by 87%;thereafter,the generated and expelled hydrocarbon filled the nearby pores formed by this contraction.Moreover,the discharged hydrocarbon could not migrate due to capillary resistance(~12 MPa)of the nanopores;hence,the nanopores formed a unique continuous in situ reservoir within the Gulong shale oil.This study demonstrated that the Gulong shale oil reservoir is an actual clay-type shale reservoir with numerous nanopore and fissures.During coagulation,a large amount of organic matter(including layered algae)was absorbed by the clay,forming an organic clay condensate that could have provided the material foundation for hydrocarbon generation at a later stage.Thermal simulation experiments revealed that the volume of organic matter decreased sharply after hydrocarbon generation and expulsion. 展开更多
关键词 SHALE clay organic matter NANOPORES nanofissures in situ accumulation Gulong Sag
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部