The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is ...The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is proposed for fabrication of porous NiO_(x)films using Pluronic P123 as the structure-directing agent and acetylacetone(AcAc)as the coordination agent.The synthesized porous NiO_(x)films enhanced the hole extraction efficiency and reduced recombination defects at the NiO_(x)/perovskite interface.Consequently,without any modification,the power conversion efficiency(PCE)of the PSC with MAPbl_(3)as the absorber layer improved from 16.50%to 19.08%.Moreover,the PCE of the device composed of perovskite Cs0.05(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))_(3)improved from 17.49%to 21.42%.Furthermore,the application of the fabricated porous NiO_(x)on fluorine-doped tin oxide(FTO)substrates enabled the fabrication of large-area PSCs(1.2 cm^(2))with a PCE of 19.63%.This study provides a novel strategy for improving the contact at the NiO_(x)/perovskite interface for the fabrication of high-performance large-area perovskite solar cells.展开更多
Optical logic gates play important roles in all-optical logic circuits,which lie at the heart of the next-generation optical computing technology.However,the intrinsic contradiction between compactness and robustness ...Optical logic gates play important roles in all-optical logic circuits,which lie at the heart of the next-generation optical computing technology.However,the intrinsic contradiction between compactness and robustness hinders the development in this field.Here,we propose a simple design principle that can possess multiple-input-output states according to the incident circular polarization and direction based on the metasurface doublet,which enables controlled-NOT logic gates in infrared region.Therefore,the directional asymmetric electromagnetic transmission can be achieved.As a proof of concept,a spin-dependent Janus metasurface is designed and experimentally verified that four distinct images corresponding to four input states can be captured in the far-field.In addition,since the design method is derived from geometric optics,it can be easily applied to other spectra.We believe that the proposed metasurface doublet may empower many potential applications in chiral imaging,chiroptical spectroscopy and optical computing.展开更多
The hybrid addition of CNTs was used to improve both the strengths and ductility of SiCp reinforced Mg matrix composites.A novel method was developed to simultaneously disperse SiCp and CNTs in Mg melt.Firstly,new CNT...The hybrid addition of CNTs was used to improve both the strengths and ductility of SiCp reinforced Mg matrix composites.A novel method was developed to simultaneously disperse SiCp and CNTs in Mg melt.Firstly,new CNTs@SiCp hybrid reinforcements were synthesized by CVD.Thus,CNTs were well pre-dispersed on the SiCp surfaces before they were added to Mg melt.Therefore,the following semisolid stirring and ultrasonic vibration dispersed the new hybrid reinforcements well in Mg-6Zn melt.The hybrid composite exhibits some unique features in microstructures.Although the distribution of SiCp was very uniform in the Mg-6Zn matrix,most CNTs distributed along the strips in the state of micro-clusters,in which CNTs were bonded very well with Mg matrix.Most of the CNTs kept their structure integrity during fabrication process.All these factors ensure that the hybrid composite have much higher strength and elongation than the mono SiC/Mg-6Zn composites.The dominant strengthening mechanism is the load transfer effect of CNTs.Apart from grain refinement,the CNTs toughen the composites by impeding the microcrack propagation inside the material.Thus,the hybrid CNTs@SiCp successfully realizes the reinforcing advantage of“1+1>2”.展开更多
Solvent residue is inevitable to occur in solution processed thin films,but its influence on the thin film quality has not been identified and addressed to date.Methylammonium acetate(MAAc)ionic liquid has recently be...Solvent residue is inevitable to occur in solution processed thin films,but its influence on the thin film quality has not been identified and addressed to date.Methylammonium acetate(MAAc)ionic liquid has recently been realized as an environmentally friendly solvent for solution processed perovskites.The specific high viscosity,low vapor pressure and strong association with perovskite precursor of the MAAc solvent is a double-edged sword,which endowed an advantageously ambient air operational and anti-solvent free perovskite deposition,but the MAAc is likely to be retained within the film and bring in detrimental effects on device performance of the corresponding solar cells.Herein,we reported a novel route to eliminate the residual solvent via a facial hydrochloric acid(HCl)annealing post-treatment(HAAP).In particular,chemical displacement reaction between the incorporated HCl and residual MAAc can be initiated to form volatile MACl and HAc,efficiently extracting MAAc residue.In the meanwhile,the stimulated mass transport via downward penetration and upward escape can trigger secondary perovskite growth with enlarged grain size and smoothened surface,leading to reduced defect state and improved interfacial contact intimacy,and also partial chloride ions are able to enter the crystal lattice to stabilize perovskite phase structure.As a result,a champion efficiency up to20.78%originating from enhanced Voc was achieved,and more than 96%of its initial efficiency can be maintained after 1000 h shelf-storage.展开更多
Benefiting from the superior optoelectronic properties and low-cost manufacturing techniques,mixedhalide wide bandgap(WBG)perovskite solar cells(PSCs)are currently considered as ideal top cells for fabricating multi-j...Benefiting from the superior optoelectronic properties and low-cost manufacturing techniques,mixedhalide wide bandgap(WBG)perovskite solar cells(PSCs)are currently considered as ideal top cells for fabricating multi-junction or tandem solar cells,which are designed to beyond the Shockley-Queisser(S-Q)limit of single-junction solar cells.However,the poor long-term operational stability of WBG PSCs limits their further employment and hinders the marketization of multi-junction or tandem solar cells.In this review,recent progresses on improving environmental stability of mixed-halide WBG PSCs through different strategies,including compositional engineering,additive engineering,interface engineering,and other strategies,are summarized.Then,the outlook and potential direction are discussed and explored to promote the further development of WBG PSCs and their applications in multijunction or tandem solar cells.展开更多
We report the physical properties, crystalline and magnetic structures of singe crystals of a new layered antiferromagnetic(AFM) material PrPd0.82Bi2. The measurements of magnetic properties and heat capacity indicate...We report the physical properties, crystalline and magnetic structures of singe crystals of a new layered antiferromagnetic(AFM) material PrPd0.82Bi2. The measurements of magnetic properties and heat capacity indicate an AFM phase transition at TN^7K. A large Sommerfeld coefficient of 329.23 m J·mol-1·K-2 is estimated based on the heat capacity data, implying a possible heavy-fermion behavior. The magnetic structure of this compound is investigated by a combined study of neutron powder and single-crystal diffraction. It is found that an A-type AFM structure with magnetic propagation wavevector k =(0 0 0) is formed below TN. The Pr3+ magnetic moment is aligned along the crystallographic c-axis with an ordered moment of 1.694(3) μBat 4K, which is smaller than the effective moment of the free Pr3+ ion of 3.58 μB.PrPd0.82Bi2 can be grown as large as 1 mm×1 cm in area with a layered shape, and is very easy to be cleaved, providing a unique opportunity to study the interplay between magnetism, possible heavy fermions, and superconductivity.展开更多
Pb-free Sn-based perovskite solar cells(PSCs) have recently made inspiring progress, and power conversion efficiency(PCE) of 14.8% has been achieved. However, due to the energy-level mismatch and poor interfacial cont...Pb-free Sn-based perovskite solar cells(PSCs) have recently made inspiring progress, and power conversion efficiency(PCE) of 14.8% has been achieved. However, due to the energy-level mismatch and poor interfacial contact between commonly used hole transport layer(i.e., poly(3,4-ethylenedioxythio phene):poly(styrene sulfonate), PEDOT:PSS) and FASnI_(3) film, it is still challenging to effectively extract holes at the interface. Owing to the p-type nature of Sn-based perovskites, the efficient hole extraction is of particular significance to improve the PCE of their solar cells. In this work, for the first time, the role of chiral cations, a-methylbenzylamine(S-/R-/rac-MBA), in promoting hole transportation of FASnI_(3)-based PSCs is demonstrated. The introduction of MBAs is found to form 2D/3D film with lowdimensional structures locating at PEDOT:PSS/FASnI_(3) interface, which facilitates the energy level alignment and efficient charge transfer at the interface. Importantly, chiral-induced spin selectivity(CISS)effect of R-MBA_(2)SnI_(4)induced by chiral R-MBA cation is found to further assist the specific interfacial transport of accumulated holes. As a result, R-MBA-based PSCs achieve decent PCE of 10.73% with much suppressed hysteresis and enhanced device stability. This work opens up a new strategy to efficiently promote the interfacial extraction of accumulated charges in working PSCs.展开更多
We systematically investigate the magnetic properties of Cu4-xZnx(OH)6FBr using the neutron diffraction and muon spin rotation and relaxation(μSR) techniques.Neutron-diffraction measurements suggest that the longrang...We systematically investigate the magnetic properties of Cu4-xZnx(OH)6FBr using the neutron diffraction and muon spin rotation and relaxation(μSR) techniques.Neutron-diffraction measurements suggest that the longrange magnetic order and the orthorhombic nuclear structure in the x=0 sample can persist up to x=0.23 and 0.43,respectively.The temperature dependence of the zero-field μSR spectra provides two characteristic temperatures,TA0 and Tλ,which are associated with the initial drop close to zero time and the long-time exponential decay of the muon relaxation,respectively.Comparison between TA0 and TM from previously reported magnetic-susceptibility measurements suggest that the former comes from the short-range interlayer-spin clusters that persist up to x=0.82.On the other hand,the doping level where Tλ becomes zero is about 0.66,which is much higher than threshold of the long-range order,i.e.,~0.4.Our results suggest that the change in the nuclear structure may alter the spin dynamics of the kagome layers and a gapped quantum-spin-liquid state may exist above x=0.66 with the perfect kagome planes.展开更多
It is known that α-RuCl_(3) has been studied extensively because of its proximity to the Kitaev quantum-spin-liquid(QSL)phase and the possibility of approaching it by tuning the competing interactions.Here we present...It is known that α-RuCl_(3) has been studied extensively because of its proximity to the Kitaev quantum-spin-liquid(QSL)phase and the possibility of approaching it by tuning the competing interactions.Here we present the first polarized inelastic neutron scattering study on α-RuCl_(3) single crystals to explore the scattering continuum around the Γ point at the Brillouin zone center,which was hypothesized to be resulting from the Kitaev QSL state but without concrete evidence.With polarization analyses,we find that,while the spin-wave excitations around the Γ point vanish above the transition temperature T_(N),the pure magnetic continuous excitations around the Γ point are robust against temperature.Furthermore,by calculating the dynamical spin-spin correlation function using the cluster perturbation theory,we derive magnetic dispersion spectra based on the K-Γ model,which involves with a ferromagnetic Kitaev interaction of −7.2 meV and an off-diagonal interaction of 5.6 meV.We find this model can reproduce not only the spin-wave excitation spectra around the Γ point,but also the non-spin-wave continuous magnetic excitations around the Γ point.These results provide evidence for the existence of fractional excitations around the Γ point originating from the Kitaev QSL state,and further support the validity of the K-Γ model as the effective minimal spin model to describe α-RuCl_(3).展开更多
The effects of welding speed on the macroscopic and microscopic residual stresses(RSes) in friction stir welded 17 vol.% SiCp/2009 Al-T4 composite plates were studied via neutron diffraction and an improved decoupled ...The effects of welding speed on the macroscopic and microscopic residual stresses(RSes) in friction stir welded 17 vol.% SiCp/2009 Al-T4 composite plates were studied via neutron diffraction and an improved decoupled hierarchical multiscale modeling methods. Measurements showed that the macroscopic and total RSes had the largest variations in the longitudinal direction(LD). Increasing the welding speed led to higher values of measured LD macroscopic and total RSes in the matrix. The welding speed also significantly influenced the distributions and magnitudes of the microscopic RSes. The RSes were predicted via an improved hierarchical multiscale model, which includes a constant coefficient of friction based thermal model. The RSes in the composite plates before friction stir welding(FSW) were computed and then set as the initial states of the FSW process during modeling. This improved decoupled multiscale model provided improved predictions of the temperature and RSes compared with our previous model.展开更多
One of the most desired strengthening mechanisms in the carbon nanotube reinforced aluminum matrix composites(CNT/Al)composites is the load transfer strengthening mechanism(LTSM).However,a fundamental issue concerning...One of the most desired strengthening mechanisms in the carbon nanotube reinforced aluminum matrix composites(CNT/Al)composites is the load transfer strengthening mechanism(LTSM).However,a fundamental issue concerning the LTSM is that quantitative measurements of load partitioning in these composites during loading are very limited.In this study,in-situ neutron diffraction study on the tensile deformation of the 3 vol.%CNT/2009 Al composite and the unreinforced 2009 Al alloy was conducted.The{311}and{220}diffraction elastic constants(DECs)of the 2009 Al alloy were determined.Using those DECs the average stress in the 2009 Al matrix of the composite was calculated.Then the average stress in the CNTs was separated by using the stress equilibrium condition.Computational homogenization models were also applied to explain the stress evolution in each phase.Predicted results agree with experimental data.In the present case,the average stress in the CNTs reaches 1630 MPa at the yield strength of the composite based on linear regression of the measured data,which leads to an increment of yield strength by about 37 MPa.As the result of this work,an approach to quantify load partitioning in the CNTs is developed for the CNT/Al composites,which can be applied to optimize the mechanical properties of the composites.展开更多
Two-dimensional nanosheet membranes with responsive nanochannels are appealing for controlled mass transfer/separation,but limited by everchanging thicknesses arising from unstable interfaces.Herein,an interfacially s...Two-dimensional nanosheet membranes with responsive nanochannels are appealing for controlled mass transfer/separation,but limited by everchanging thicknesses arising from unstable interfaces.Herein,an interfacially stable,thermo-responsive nanosheet membrane is assembled from twin-chain stabilized metal-organic framework(MOF)nanosheets,which function via two cyclic amide-bearing polymers,thermo-responsive poly(N-vinyl caprolactam)(PVCL)for adjusting channel size,and non-responsive polyvinylpyrrolidone for supporting constant interlayer distance.Owing to the microporosity of MOF nanosheets and controllable interface wettability,the hybrid membrane demonstrates both superior separation performance and stable thermo-responsiveness.Scattering and correlation spectroscopic analyses further corroborate the respective roles of the two polymers and reveal the microenvironment changes of nanochannels are motivated by the dehydration of PVCL chains.展开更多
The safe,flexible,and environment-friendly Zn-ion batteries have aroused great interests nowadays.Nevertheless,flagrant Zn dendrite uncontrollably grows in liquid electrolytes due to insufficient surface protection,wh...The safe,flexible,and environment-friendly Zn-ion batteries have aroused great interests nowadays.Nevertheless,flagrant Zn dendrite uncontrollably grows in liquid electrolytes due to insufficient surface protection,which severely impedes the future applications of Zn-ion batteries especially at high current densities.Gel electrolytes are emerging to tackle this issue,yet the required high modulus for inhibiting dendrite growth as well as concurrent poor interfacial contact with roughened Zn electrodes are not easily reconcilable to regulate the fragile Zn/Zn^(2+) interface.Here we demonstrate,such a conflict may be defeated by using a mechanoadaptive cellulose nanofibril-based morphing gel electrolyte(MorphGE),which synergizes bulk compliance for optimizing interfacial contact as well as high modulus for suppressing dendrite formation.Moreover,by anchoring desolvated Zn^(2+) on cellulose nanofibrils,the side reactions which induce dendrite formation are also significantly reduced.As a result,the MorphGE-based symmetrical Zn-ion battery demonstrated outstanding stability for more than 100 h at the high current density of 10 mA·cm^(−2) and areal capacity of 10 mA·h·cm^(−2),and the corresponding Zn-ion battery delivered a prominent specific capacity of 100 mA·h·g^(−1) for more than 500 cycles at 20 C.The present example of engineering the mechanoadaptivity of gel electrolytes will shed light on a new pathway for designing highly safe and flexible energy storage devices.展开更多
N^+ ion irradiation is utilized to tune the structure and mechanical properties of a Cu48Zr47.2Al4Nb0.8 bulk metallic glass composite(BMGC). Ion irradiation increases the disorder near the surface, as probed by neutro...N^+ ion irradiation is utilized to tune the structure and mechanical properties of a Cu48Zr47.2Al4Nb0.8 bulk metallic glass composite(BMGC). Ion irradiation increases the disorder near the surface, as probed by neutron diffraction, and, moreover, causes the phase transformation from B2Cu Zr to B19’ CuZr martensitic phase in the studied BMGC. The tensile plasticity of the BMGC is dramatically improved after ion irradiation, which results from multiple shear banding on the surface and the martensitic transformation of the B2 to B19’ Cu Zr martensitic phase. The experimental results are strongly corroborated by complementary molecular dynamic simulations.展开更多
The crucial component,bulky spacers,in two-dimensional Ruddlesden-Popper(2 DRP)layered tin(Sn)perovskites are highly limited by halide ammonium salts,leading to the insufficient control of complex crystallization proc...The crucial component,bulky spacers,in two-dimensional Ruddlesden-Popper(2 DRP)layered tin(Sn)perovskites are highly limited by halide ammonium salts,leading to the insufficient control of complex crystallization process due to the limited interaction between bulky spacers and 2 DRP perovskite frameworks.Here,we report an ionic liquid-bulky spacer,butylammounium acetate(BAAc O),for constructing efficient and stable 2 DRP Sn-based perovskite solar cells(PSCs).In contrast to the traditional halide ammonium bulky spacer,butylammounium iodide(BAI),the Ac O^(-)-functional group in BAAc O has a strong interaction with formamidine ions(FA^(+))and Sn2+.The inter-component interaction allows the formation of controllable intermediates for the favorable growth of smooth,dense,and highly oriented perovskite films.A PSC with power conversion efficiency of 10.36%(7.16%for BAI)is achieved,which is the highest report,along with improved stability with~90%retained after~600 h storage in N_(2) atmosphere without any encapsulation.展开更多
We report thermodynamic and neutron scattering measurements of the triangular-lattice quantum Ising magnet TmMgGaO_(4)in longitudinal magnetic fields.Our experiments reveal a quasi-plateau state induced by quantum flu...We report thermodynamic and neutron scattering measurements of the triangular-lattice quantum Ising magnet TmMgGaO_(4)in longitudinal magnetic fields.Our experiments reveal a quasi-plateau state induced by quantum fluctuations.This state exhibits an unconventional non-monotonic field and temperature dependence of the magnetic order and excitation gap.In the high field regime where the quantum fluctuations are largely suppressed,we observed a disordered state with coherent magnon-like excitations despite the suppression of the spin excitation intensity.Through detailed semi-classical calculations,we are able to understand these behaviors quantitatively from the subtle competition between quantum fluctuations and frustrated Ising interactions.展开更多
Light management is essential for military stealth,optical information communication,and energy-efficient buildings.However,current light management materials face challenges of limited optical modulation range and po...Light management is essential for military stealth,optical information communication,and energy-efficient buildings.However,current light management materials face challenges of limited optical modulation range and poor mechanical properties.Herein,we report a locally confined polymerization(LCP)approach to develop hierarchical network-augmented hydroglasses(HNAH)based on poly(methacrylic acid)for broadband light management as well as mechanical enhancement.The dynamic geometry of the networks ranging from nano-to micro-scale enables to manage the light wavelength over three orders of magnitude,from the ultraviolet(UV)to infrared(IR)band,and reversibly switches transmittance in the visible region.A smart hydroglass window is developed with elasticity,outstanding robustness,self-healing,notch resistance,biosafety by blocking UV radiation,and high solar energy shielding efficacy with a temperature drop of 13℃.Compared to current inorganic glasses and Plexiglas,the hydroglass not only is a promising and versatile candidate but also provides novel insights into the molecular and structural design of broadband light management and optimized mechanical properties.展开更多
Obtaining long-term stable and robust perovskite colloids solution remains an important scientific challenge due to the limited interaction between solvent and perovskite solutes.Here,we unveil the formation mechanism...Obtaining long-term stable and robust perovskite colloids solution remains an important scientific challenge due to the limited interaction between solvent and perovskite solutes.Here,we unveil the formation mechanism of chemically robust perovskite precursor solutions under ambient conditions using methylammonium acetate(CH3NH3•CH3COO,MAAc)protic ionic liquid(PIL)solvent.Tens of nanometers colloids are assembled on the molecular level via regular oriented gel-like lamellae with a mean thickness of 34.69 nm,width of 56.81 nm,and distance of 91.05 nm.展开更多
基金supported by the National Key Research and Development Program of China(grant no.2018YFA0208701)National Natural Science Foundation of China(grant no.21773308)+6 种基金Research Funds of Renmin University of China(grant nos.2017030013,201903020,and 20XNH059)Fundamental Research Funds for Central Universities(China)supported by the Solar Energy Research Institute of Singapore(SERIS)at the National University of Singapore(NUS)supported by NUS,the National Research Foundation Singapore(NRF),the Energy Market Authority of Singapore(EMA),and the Singapore Economic Development Board(EDB)the experimental support from Suzhou Fangsheng FS-300funding from Deutsche Forschungsge-meinschaft(DFG)via Germany's Excellence Strategy-EXC 2089/1-390776260(e-conversion)as well as from TUM.solar in the context of the Bavarian Collaborative Research Project Solar Technologies Go Hybrid(SoITech)the China Scholarship Council(CSC)funding
文摘The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is proposed for fabrication of porous NiO_(x)films using Pluronic P123 as the structure-directing agent and acetylacetone(AcAc)as the coordination agent.The synthesized porous NiO_(x)films enhanced the hole extraction efficiency and reduced recombination defects at the NiO_(x)/perovskite interface.Consequently,without any modification,the power conversion efficiency(PCE)of the PSC with MAPbl_(3)as the absorber layer improved from 16.50%to 19.08%.Moreover,the PCE of the device composed of perovskite Cs0.05(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))_(3)improved from 17.49%to 21.42%.Furthermore,the application of the fabricated porous NiO_(x)on fluorine-doped tin oxide(FTO)substrates enabled the fabrication of large-area PSCs(1.2 cm^(2))with a PCE of 19.63%.This study provides a novel strategy for improving the contact at the NiO_(x)/perovskite interface for the fabrication of high-performance large-area perovskite solar cells.
基金supported by the National Natural Science Foundation of China (12104326,12104329 and 62105228)Natural Science Foundation of Sichuan Province (2022NSFSC2000)+3 种基金the Opening Foundation of State Key Laboratory of Optical Technologies on Nano-Fabrication and MicroEngineeringfunding by Deutsche Forschungsgemeinschaft (DFG,German Research Foundation) under Germany’s Excellence Strategy–EXC 2089/1–390776260 (e-conversion)the context of the Bavarian Collaborative Research Project Solar Technologies Go Hybrid (SolTech)the support from the China Scholarship Council (CSC)
文摘Optical logic gates play important roles in all-optical logic circuits,which lie at the heart of the next-generation optical computing technology.However,the intrinsic contradiction between compactness and robustness hinders the development in this field.Here,we propose a simple design principle that can possess multiple-input-output states according to the incident circular polarization and direction based on the metasurface doublet,which enables controlled-NOT logic gates in infrared region.Therefore,the directional asymmetric electromagnetic transmission can be achieved.As a proof of concept,a spin-dependent Janus metasurface is designed and experimentally verified that four distinct images corresponding to four input states can be captured in the far-field.In addition,since the design method is derived from geometric optics,it can be easily applied to other spectra.We believe that the proposed metasurface doublet may empower many potential applications in chiral imaging,chiroptical spectroscopy and optical computing.
基金This work was supported by“National Natural Science Foundation of China”(Grant Nos.51871074,51971078 and 51671066)“The Project National United Engineering Laboratory for Advanced Bearing Tribology,Henan University of Science and Technology”(Grant No.201911).
文摘The hybrid addition of CNTs was used to improve both the strengths and ductility of SiCp reinforced Mg matrix composites.A novel method was developed to simultaneously disperse SiCp and CNTs in Mg melt.Firstly,new CNTs@SiCp hybrid reinforcements were synthesized by CVD.Thus,CNTs were well pre-dispersed on the SiCp surfaces before they were added to Mg melt.Therefore,the following semisolid stirring and ultrasonic vibration dispersed the new hybrid reinforcements well in Mg-6Zn melt.The hybrid composite exhibits some unique features in microstructures.Although the distribution of SiCp was very uniform in the Mg-6Zn matrix,most CNTs distributed along the strips in the state of micro-clusters,in which CNTs were bonded very well with Mg matrix.Most of the CNTs kept their structure integrity during fabrication process.All these factors ensure that the hybrid composite have much higher strength and elongation than the mono SiC/Mg-6Zn composites.The dominant strengthening mechanism is the load transfer effect of CNTs.Apart from grain refinement,the CNTs toughen the composites by impeding the microcrack propagation inside the material.Thus,the hybrid CNTs@SiCp successfully realizes the reinforcing advantage of“1+1>2”.
基金financially supported by the National Natural Science Foundation of China(Grants 51972172,61705102,61605073,61935017 and 91833304)Projects of International Cooperation and Exchanges NSFC(51811530018)+3 种基金the Young 1000 Talents Global Recruitment Program of Chinathe Jiangsu Specially Appointed Professor Program“Six talent peaks”Project in Jiangsu Province,Chinathe fellowship of China Postdoctoral Science Foundation(2020M672181)。
文摘Solvent residue is inevitable to occur in solution processed thin films,but its influence on the thin film quality has not been identified and addressed to date.Methylammonium acetate(MAAc)ionic liquid has recently been realized as an environmentally friendly solvent for solution processed perovskites.The specific high viscosity,low vapor pressure and strong association with perovskite precursor of the MAAc solvent is a double-edged sword,which endowed an advantageously ambient air operational and anti-solvent free perovskite deposition,but the MAAc is likely to be retained within the film and bring in detrimental effects on device performance of the corresponding solar cells.Herein,we reported a novel route to eliminate the residual solvent via a facial hydrochloric acid(HCl)annealing post-treatment(HAAP).In particular,chemical displacement reaction between the incorporated HCl and residual MAAc can be initiated to form volatile MACl and HAc,efficiently extracting MAAc residue.In the meanwhile,the stimulated mass transport via downward penetration and upward escape can trigger secondary perovskite growth with enlarged grain size and smoothened surface,leading to reduced defect state and improved interfacial contact intimacy,and also partial chloride ions are able to enter the crystal lattice to stabilize perovskite phase structure.As a result,a champion efficiency up to20.78%originating from enhanced Voc was achieved,and more than 96%of its initial efficiency can be maintained after 1000 h shelf-storage.
基金the National Natural Science Foundation of China(Grant Nos.51602149,61705102,61605073,61935017,91833304,and 91733302)the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars,China(Grant BK20200034)+5 种基金the Projects of International Cooperation and Exchanges NSFC(51811530018)the Startup Research Foundation from Nanjing Tech University(3827401783,3983500196)the Young 1000 Talents Global Recruitment Program of Chinathe Jiangsu Specially-Appointed Professor programthe“Six talent peaks”Project in Jiangsu Province,Chinafunding from the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germanys Excellence Strategy-EXC 2089/1-390776260(e-conversion)。
文摘Benefiting from the superior optoelectronic properties and low-cost manufacturing techniques,mixedhalide wide bandgap(WBG)perovskite solar cells(PSCs)are currently considered as ideal top cells for fabricating multi-junction or tandem solar cells,which are designed to beyond the Shockley-Queisser(S-Q)limit of single-junction solar cells.However,the poor long-term operational stability of WBG PSCs limits their further employment and hinders the marketization of multi-junction or tandem solar cells.In this review,recent progresses on improving environmental stability of mixed-halide WBG PSCs through different strategies,including compositional engineering,additive engineering,interface engineering,and other strategies,are summarized.Then,the outlook and potential direction are discussed and explored to promote the further development of WBG PSCs and their applications in multijunction or tandem solar cells.
基金National Key Research and Development Program of China(Grant Nos.2017YFA0302901 and 2016YFA0300604)the National Natural Science Foundation of China(Grant No.11774399)+2 种基金Beijing Natural Science Foundation,China(Grant No.Z180008)the K.C.Wong Education Foundation(Grant No.GJTD-2018-01)the DAAD-PPP programme,and the joint German-Sino HGF-OCPC Postdoc Programme.
文摘We report the physical properties, crystalline and magnetic structures of singe crystals of a new layered antiferromagnetic(AFM) material PrPd0.82Bi2. The measurements of magnetic properties and heat capacity indicate an AFM phase transition at TN^7K. A large Sommerfeld coefficient of 329.23 m J·mol-1·K-2 is estimated based on the heat capacity data, implying a possible heavy-fermion behavior. The magnetic structure of this compound is investigated by a combined study of neutron powder and single-crystal diffraction. It is found that an A-type AFM structure with magnetic propagation wavevector k =(0 0 0) is formed below TN. The Pr3+ magnetic moment is aligned along the crystallographic c-axis with an ordered moment of 1.694(3) μBat 4K, which is smaller than the effective moment of the free Pr3+ ion of 3.58 μB.PrPd0.82Bi2 can be grown as large as 1 mm×1 cm in area with a layered shape, and is very easy to be cleaved, providing a unique opportunity to study the interplay between magnetism, possible heavy fermions, and superconductivity.
基金financially supported by the Natural Science Foundation of China (Grants 51802253, 51972172, 61705102,61904152, and 91833304)the China Postdoctoral Science Foundation (Grant 2021M692630)+6 种基金the Natural Science Basic Research Plan in Shaanxi Province of China (2019JM-326)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University (No. 2020GXLH-Z-007)the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars,China (Grant BK20200034)the Young 1000 Talents Global Recruitment Program of Chinathe Jiangsu Specially Appointed Professor programthe “Six talent peaks” Project in Jiangsu Province,Chinathe Fundamental Research Funds for the Central Universities。
文摘Pb-free Sn-based perovskite solar cells(PSCs) have recently made inspiring progress, and power conversion efficiency(PCE) of 14.8% has been achieved. However, due to the energy-level mismatch and poor interfacial contact between commonly used hole transport layer(i.e., poly(3,4-ethylenedioxythio phene):poly(styrene sulfonate), PEDOT:PSS) and FASnI_(3) film, it is still challenging to effectively extract holes at the interface. Owing to the p-type nature of Sn-based perovskites, the efficient hole extraction is of particular significance to improve the PCE of their solar cells. In this work, for the first time, the role of chiral cations, a-methylbenzylamine(S-/R-/rac-MBA), in promoting hole transportation of FASnI_(3)-based PSCs is demonstrated. The introduction of MBAs is found to form 2D/3D film with lowdimensional structures locating at PEDOT:PSS/FASnI_(3) interface, which facilitates the energy level alignment and efficient charge transfer at the interface. Importantly, chiral-induced spin selectivity(CISS)effect of R-MBA_(2)SnI_(4)induced by chiral R-MBA cation is found to further assist the specific interfacial transport of accumulated holes. As a result, R-MBA-based PSCs achieve decent PCE of 10.73% with much suppressed hysteresis and enhanced device stability. This work opens up a new strategy to efficiently promote the interfacial extraction of accumulated charges in working PSCs.
基金Supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0302900,2016YFA0300500,2018YFA0704200,2017YFA0303100,and 2016YFA0300600)the National Natural Science Foundation of China(Grant Nos.11874401,11674406,11674372,11961160699,11774399,12061130200,11974392,and 11822411)+4 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant Nos.XDB25000000,XDB07020000,XDB33000000,and XDB28000000)the Beijing Natural Science Foundation(Grant Nos.Z180008 and JQ19002)Guangdong Introducing Innovative and Entrepreneurial Teams(Grant No.2017ZT07C062)the Youth Innovation Promotion Association of CAS(Grant No.2016004)the Royal Society-Newton Advanced Fellowship(Grant No.NAF∖R1∖201248).
文摘We systematically investigate the magnetic properties of Cu4-xZnx(OH)6FBr using the neutron diffraction and muon spin rotation and relaxation(μSR) techniques.Neutron-diffraction measurements suggest that the longrange magnetic order and the orthorhombic nuclear structure in the x=0 sample can persist up to x=0.23 and 0.43,respectively.The temperature dependence of the zero-field μSR spectra provides two characteristic temperatures,TA0 and Tλ,which are associated with the initial drop close to zero time and the long-time exponential decay of the muon relaxation,respectively.Comparison between TA0 and TM from previously reported magnetic-susceptibility measurements suggest that the former comes from the short-range interlayer-spin clusters that persist up to x=0.82.On the other hand,the doping level where Tλ becomes zero is about 0.66,which is much higher than threshold of the long-range order,i.e.,~0.4.Our results suggest that the change in the nuclear structure may alter the spin dynamics of the kagome layers and a gapped quantum-spin-liquid state may exist above x=0.66 with the perfect kagome planes.
基金supported by National Key Research and Development Program of China(Grant No.2021YFA1400400)the National Natural Science Foundation of China(Grant Nos.11822405,12074174,12074175,11774152,11904170,12004249,12004251,and 12004191)+3 种基金the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20180006,BK20190436 and BK20200738)the Shanghai Sailing Program(Grant Nos.20YF1430600 and21YF1429200)the Fundamental Research Funds for the Central Universities(Grant No.020414380183)the Office of International Cooperation and Exchanges of Nanjing University。
文摘It is known that α-RuCl_(3) has been studied extensively because of its proximity to the Kitaev quantum-spin-liquid(QSL)phase and the possibility of approaching it by tuning the competing interactions.Here we present the first polarized inelastic neutron scattering study on α-RuCl_(3) single crystals to explore the scattering continuum around the Γ point at the Brillouin zone center,which was hypothesized to be resulting from the Kitaev QSL state but without concrete evidence.With polarization analyses,we find that,while the spin-wave excitations around the Γ point vanish above the transition temperature T_(N),the pure magnetic continuous excitations around the Γ point are robust against temperature.Furthermore,by calculating the dynamical spin-spin correlation function using the cluster perturbation theory,we derive magnetic dispersion spectra based on the K-Γ model,which involves with a ferromagnetic Kitaev interaction of −7.2 meV and an off-diagonal interaction of 5.6 meV.We find this model can reproduce not only the spin-wave excitation spectra around the Γ point,but also the non-spin-wave continuous magnetic excitations around the Γ point.These results provide evidence for the existence of fractional excitations around the Γ point originating from the Kitaev QSL state,and further support the validity of the K-Γ model as the effective minimal spin model to describe α-RuCl_(3).
基金supported financially by the National Key R&D Program of China (No. 2017YFB0703104)the National Natural Science Foundation of China (No. 51401219)
文摘The effects of welding speed on the macroscopic and microscopic residual stresses(RSes) in friction stir welded 17 vol.% SiCp/2009 Al-T4 composite plates were studied via neutron diffraction and an improved decoupled hierarchical multiscale modeling methods. Measurements showed that the macroscopic and total RSes had the largest variations in the longitudinal direction(LD). Increasing the welding speed led to higher values of measured LD macroscopic and total RSes in the matrix. The welding speed also significantly influenced the distributions and magnitudes of the microscopic RSes. The RSes were predicted via an improved hierarchical multiscale model, which includes a constant coefficient of friction based thermal model. The RSes in the composite plates before friction stir welding(FSW) were computed and then set as the initial states of the FSW process during modeling. This improved decoupled multiscale model provided improved predictions of the temperature and RSes compared with our previous model.
基金the National Key R&D Program of China(No.2017YFB0703104)the National Natural Science Foundation of China(Nos.51871214 and 51931009)the“Key Research Program of Frontier Sciences,CAS”(No.QYZDJ-SSWJSC015)。
文摘One of the most desired strengthening mechanisms in the carbon nanotube reinforced aluminum matrix composites(CNT/Al)composites is the load transfer strengthening mechanism(LTSM).However,a fundamental issue concerning the LTSM is that quantitative measurements of load partitioning in these composites during loading are very limited.In this study,in-situ neutron diffraction study on the tensile deformation of the 3 vol.%CNT/2009 Al composite and the unreinforced 2009 Al alloy was conducted.The{311}and{220}diffraction elastic constants(DECs)of the 2009 Al alloy were determined.Using those DECs the average stress in the 2009 Al matrix of the composite was calculated.Then the average stress in the CNTs was separated by using the stress equilibrium condition.Computational homogenization models were also applied to explain the stress evolution in each phase.Predicted results agree with experimental data.In the present case,the average stress in the CNTs reaches 1630 MPa at the yield strength of the composite based on linear regression of the measured data,which leads to an increment of yield strength by about 37 MPa.As the result of this work,an approach to quantify load partitioning in the CNTs is developed for the CNT/Al composites,which can be applied to optimize the mechanical properties of the composites.
基金support from the National Natural Science Foundation of China(Nos.21991123,51733003,21674025,and 51873035)“Qimingxing”project(No.19QA1400200)of the Shanghai Committee of Science and Technology.
文摘Two-dimensional nanosheet membranes with responsive nanochannels are appealing for controlled mass transfer/separation,but limited by everchanging thicknesses arising from unstable interfaces.Herein,an interfacially stable,thermo-responsive nanosheet membrane is assembled from twin-chain stabilized metal-organic framework(MOF)nanosheets,which function via two cyclic amide-bearing polymers,thermo-responsive poly(N-vinyl caprolactam)(PVCL)for adjusting channel size,and non-responsive polyvinylpyrrolidone for supporting constant interlayer distance.Owing to the microporosity of MOF nanosheets and controllable interface wettability,the hybrid membrane demonstrates both superior separation performance and stable thermo-responsiveness.Scattering and correlation spectroscopic analyses further corroborate the respective roles of the two polymers and reveal the microenvironment changes of nanochannels are motivated by the dehydration of PVCL chains.
基金the National Science Foundation of China(NSFC)(Nos.51903041,21991123,and 51873035)Natural Science Foundation of Shanghai(No.19ZR1470700)“Qimingxing Plan”(No.19QA1400200).
文摘The safe,flexible,and environment-friendly Zn-ion batteries have aroused great interests nowadays.Nevertheless,flagrant Zn dendrite uncontrollably grows in liquid electrolytes due to insufficient surface protection,which severely impedes the future applications of Zn-ion batteries especially at high current densities.Gel electrolytes are emerging to tackle this issue,yet the required high modulus for inhibiting dendrite growth as well as concurrent poor interfacial contact with roughened Zn electrodes are not easily reconcilable to regulate the fragile Zn/Zn^(2+) interface.Here we demonstrate,such a conflict may be defeated by using a mechanoadaptive cellulose nanofibril-based morphing gel electrolyte(MorphGE),which synergizes bulk compliance for optimizing interfacial contact as well as high modulus for suppressing dendrite formation.Moreover,by anchoring desolvated Zn^(2+) on cellulose nanofibrils,the side reactions which induce dendrite formation are also significantly reduced.As a result,the MorphGE-based symmetrical Zn-ion battery demonstrated outstanding stability for more than 100 h at the high current density of 10 mA·cm^(−2) and areal capacity of 10 mA·h·cm^(−2),and the corresponding Zn-ion battery delivered a prominent specific capacity of 100 mA·h·g^(−1) for more than 500 cycles at 20 C.The present example of engineering the mechanoadaptivity of gel electrolytes will shed light on a new pathway for designing highly safe and flexible energy storage devices.
基金financially supported by the National Natural Science Foundation of China (Nos. 51871076, 51671070, 51827801, 51671067, and 51671071)the Opening Funding of the State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, China (No. AWJ-Z16-02)the Chinese Scholarship Council (CSC) and the German Science Foundation (DFG) (Nos. PA 2275/2-1, PA 2275/4-1, and PA 2275/6-1)
文摘N^+ ion irradiation is utilized to tune the structure and mechanical properties of a Cu48Zr47.2Al4Nb0.8 bulk metallic glass composite(BMGC). Ion irradiation increases the disorder near the surface, as probed by neutron diffraction, and, moreover, causes the phase transformation from B2Cu Zr to B19’ CuZr martensitic phase in the studied BMGC. The tensile plasticity of the BMGC is dramatically improved after ion irradiation, which results from multiple shear banding on the surface and the martensitic transformation of the B2 to B19’ Cu Zr martensitic phase. The experimental results are strongly corroborated by complementary molecular dynamic simulations.
基金financially supported by the Natural Science Foundation of China(51972172,61705102,61605073,61935017,91833304,91733302)the National Key R&D Program of China(2017YFB1002900)+3 种基金Projects of International Cooperation and Exchanges NSFC(51811530018)Young 1000 Talents Global Recruitment Program of ChinaJiangsu Specially-Appointed Professor program“Six talent peaks”Project in Jiangsu Province,China。
文摘The crucial component,bulky spacers,in two-dimensional Ruddlesden-Popper(2 DRP)layered tin(Sn)perovskites are highly limited by halide ammonium salts,leading to the insufficient control of complex crystallization process due to the limited interaction between bulky spacers and 2 DRP perovskite frameworks.Here,we report an ionic liquid-bulky spacer,butylammounium acetate(BAAc O),for constructing efficient and stable 2 DRP Sn-based perovskite solar cells(PSCs).In contrast to the traditional halide ammonium bulky spacer,butylammounium iodide(BAI),the Ac O^(-)-functional group in BAAc O has a strong interaction with formamidine ions(FA^(+))and Sn2+.The inter-component interaction allows the formation of controllable intermediates for the favorable growth of smooth,dense,and highly oriented perovskite films.A PSC with power conversion efficiency of 10.36%(7.16%for BAI)is achieved,which is the highest report,along with improved stability with~90%retained after~600 h storage in N_(2) atmosphere without any encapsulation.
基金supported by the Innovation Program of Shanghai Municipal Education Commission(2017–01-07–00-07-E00018)the National Key R&D Program of the MOST of China(2016YFA0300203,2016YFA0300500,2016YFA0301001,and 2018YFE0103200)+6 种基金the National Natural Science Foundation of China(11874119)Shanghai Municipal Science and Technology Major Project(2019SHZDZX04)the Hong Kong Research Grants Council(17303819 and 17306520)supported by the National Natural Science Foundation of China(11875265)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(3He based neutron polarization devices)the Institute of High Energy Physicsthe Chinese Academy of Sciences。
文摘We report thermodynamic and neutron scattering measurements of the triangular-lattice quantum Ising magnet TmMgGaO_(4)in longitudinal magnetic fields.Our experiments reveal a quasi-plateau state induced by quantum fluctuations.This state exhibits an unconventional non-monotonic field and temperature dependence of the magnetic order and excitation gap.In the high field regime where the quantum fluctuations are largely suppressed,we observed a disordered state with coherent magnon-like excitations despite the suppression of the spin excitation intensity.Through detailed semi-classical calculations,we are able to understand these behaviors quantitatively from the subtle competition between quantum fluctuations and frustrated Ising interactions.
基金support from the National Natural Science Foundation of China(Nos.51973035 and 51733003)。
文摘Light management is essential for military stealth,optical information communication,and energy-efficient buildings.However,current light management materials face challenges of limited optical modulation range and poor mechanical properties.Herein,we report a locally confined polymerization(LCP)approach to develop hierarchical network-augmented hydroglasses(HNAH)based on poly(methacrylic acid)for broadband light management as well as mechanical enhancement.The dynamic geometry of the networks ranging from nano-to micro-scale enables to manage the light wavelength over three orders of magnitude,from the ultraviolet(UV)to infrared(IR)band,and reversibly switches transmittance in the visible region.A smart hydroglass window is developed with elasticity,outstanding robustness,self-healing,notch resistance,biosafety by blocking UV radiation,and high solar energy shielding efficacy with a temperature drop of 13℃.Compared to current inorganic glasses and Plexiglas,the hydroglass not only is a promising and versatile candidate but also provides novel insights into the molecular and structural design of broadband light management and optimized mechanical properties.
基金supported by the Natural Science Foundation of China(grant nos.51602149,61705102,61605073,61935017,62175268,and 22022309)the Macao Science and Technology Development Fund(grant no.FDCT-0044/2020/A1)+3 种基金research grants(grant nos.MYRG2018-00148-IAPME and MYRG2020-00151-IAPME)from the University of Macao and Natural Science Foundation of Guangdong Province,China(grant no.2019A1515012186)Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials(grant no.2019B121205002)Shenzhen-Hong Kong-Macao Science and Technology Innovation Project(Category C)(grant no.SGDX2020110309360100)and the Young 1000 Talents Global Recruitment Program of China.
文摘Obtaining long-term stable and robust perovskite colloids solution remains an important scientific challenge due to the limited interaction between solvent and perovskite solutes.Here,we unveil the formation mechanism of chemically robust perovskite precursor solutions under ambient conditions using methylammonium acetate(CH3NH3•CH3COO,MAAc)protic ionic liquid(PIL)solvent.Tens of nanometers colloids are assembled on the molecular level via regular oriented gel-like lamellae with a mean thickness of 34.69 nm,width of 56.81 nm,and distance of 91.05 nm.