We report the physical properties, crystalline and magnetic structures of singe crystals of a new layered antiferromagnetic(AFM) material PrPd0.82Bi2. The measurements of magnetic properties and heat capacity indicate...We report the physical properties, crystalline and magnetic structures of singe crystals of a new layered antiferromagnetic(AFM) material PrPd0.82Bi2. The measurements of magnetic properties and heat capacity indicate an AFM phase transition at TN^7K. A large Sommerfeld coefficient of 329.23 m J·mol-1·K-2 is estimated based on the heat capacity data, implying a possible heavy-fermion behavior. The magnetic structure of this compound is investigated by a combined study of neutron powder and single-crystal diffraction. It is found that an A-type AFM structure with magnetic propagation wavevector k =(0 0 0) is formed below TN. The Pr3+ magnetic moment is aligned along the crystallographic c-axis with an ordered moment of 1.694(3) μBat 4K, which is smaller than the effective moment of the free Pr3+ ion of 3.58 μB.PrPd0.82Bi2 can be grown as large as 1 mm×1 cm in area with a layered shape, and is very easy to be cleaved, providing a unique opportunity to study the interplay between magnetism, possible heavy fermions, and superconductivity.展开更多
We systematically investigate the magnetic properties of Cu4-xZnx(OH)6FBr using the neutron diffraction and muon spin rotation and relaxation(μSR) techniques.Neutron-diffraction measurements suggest that the longrang...We systematically investigate the magnetic properties of Cu4-xZnx(OH)6FBr using the neutron diffraction and muon spin rotation and relaxation(μSR) techniques.Neutron-diffraction measurements suggest that the longrange magnetic order and the orthorhombic nuclear structure in the x=0 sample can persist up to x=0.23 and 0.43,respectively.The temperature dependence of the zero-field μSR spectra provides two characteristic temperatures,TA0 and Tλ,which are associated with the initial drop close to zero time and the long-time exponential decay of the muon relaxation,respectively.Comparison between TA0 and TM from previously reported magnetic-susceptibility measurements suggest that the former comes from the short-range interlayer-spin clusters that persist up to x=0.82.On the other hand,the doping level where Tλ becomes zero is about 0.66,which is much higher than threshold of the long-range order,i.e.,~0.4.Our results suggest that the change in the nuclear structure may alter the spin dynamics of the kagome layers and a gapped quantum-spin-liquid state may exist above x=0.66 with the perfect kagome planes.展开更多
It is known that α-RuCl_(3) has been studied extensively because of its proximity to the Kitaev quantum-spin-liquid(QSL)phase and the possibility of approaching it by tuning the competing interactions.Here we present...It is known that α-RuCl_(3) has been studied extensively because of its proximity to the Kitaev quantum-spin-liquid(QSL)phase and the possibility of approaching it by tuning the competing interactions.Here we present the first polarized inelastic neutron scattering study on α-RuCl_(3) single crystals to explore the scattering continuum around the Γ point at the Brillouin zone center,which was hypothesized to be resulting from the Kitaev QSL state but without concrete evidence.With polarization analyses,we find that,while the spin-wave excitations around the Γ point vanish above the transition temperature T_(N),the pure magnetic continuous excitations around the Γ point are robust against temperature.Furthermore,by calculating the dynamical spin-spin correlation function using the cluster perturbation theory,we derive magnetic dispersion spectra based on the K-Γ model,which involves with a ferromagnetic Kitaev interaction of −7.2 meV and an off-diagonal interaction of 5.6 meV.We find this model can reproduce not only the spin-wave excitation spectra around the Γ point,but also the non-spin-wave continuous magnetic excitations around the Γ point.These results provide evidence for the existence of fractional excitations around the Γ point originating from the Kitaev QSL state,and further support the validity of the K-Γ model as the effective minimal spin model to describe α-RuCl_(3).展开更多
In this work,we demonstrate the power of a simple top-down electrochemical erosion approach to obtain Pt nanoparticle with controlled shapes and sizes(in the range from-2 to-10 nm).Carbon supported nanoparticles with ...In this work,we demonstrate the power of a simple top-down electrochemical erosion approach to obtain Pt nanoparticle with controlled shapes and sizes(in the range from-2 to-10 nm).Carbon supported nanoparticles with narrow size distributions have been synthesized by applying an alternating voltage to macroscopic bulk platinum structures,such as disks or wires.Without using any surfactants,the size and shape of the particles can be changed by adjusting simple parameters such as the applied potential,frequency and electrolyte composition.For instance,application of a sinusoidal AC voltage with lower frequencies results in cubic nanoparticles;whereas higher frequencies lead to predominantly spherical nanoparticles.On the other hand,the amplitude of the,sinusoidal signal was found to affect the particle size;the lower the amplitude of the applied AC signal,the smaller the resulting particle size.Pt/C catalysts prepared by this approach showed 0.76 A/mg mass activity towards the oxygen reduction reaction which is-2 times higher than the state-of-the-art commercial Pt/C catalyst(0.42 A/mg)from Tanaka.In addition to this,we discussed the mechanistic insights about the nanoparticle formation pathways.展开更多
We report thermodynamic and neutron scattering measurements of the triangular-lattice quantum Ising magnet TmMgGaO_(4)in longitudinal magnetic fields.Our experiments reveal a quasi-plateau state induced by quantum flu...We report thermodynamic and neutron scattering measurements of the triangular-lattice quantum Ising magnet TmMgGaO_(4)in longitudinal magnetic fields.Our experiments reveal a quasi-plateau state induced by quantum fluctuations.This state exhibits an unconventional non-monotonic field and temperature dependence of the magnetic order and excitation gap.In the high field regime where the quantum fluctuations are largely suppressed,we observed a disordered state with coherent magnon-like excitations despite the suppression of the spin excitation intensity.Through detailed semi-classical calculations,we are able to understand these behaviors quantitatively from the subtle competition between quantum fluctuations and frustrated Ising interactions.展开更多
基金National Key Research and Development Program of China(Grant Nos.2017YFA0302901 and 2016YFA0300604)the National Natural Science Foundation of China(Grant No.11774399)+2 种基金Beijing Natural Science Foundation,China(Grant No.Z180008)the K.C.Wong Education Foundation(Grant No.GJTD-2018-01)the DAAD-PPP programme,and the joint German-Sino HGF-OCPC Postdoc Programme.
文摘We report the physical properties, crystalline and magnetic structures of singe crystals of a new layered antiferromagnetic(AFM) material PrPd0.82Bi2. The measurements of magnetic properties and heat capacity indicate an AFM phase transition at TN^7K. A large Sommerfeld coefficient of 329.23 m J·mol-1·K-2 is estimated based on the heat capacity data, implying a possible heavy-fermion behavior. The magnetic structure of this compound is investigated by a combined study of neutron powder and single-crystal diffraction. It is found that an A-type AFM structure with magnetic propagation wavevector k =(0 0 0) is formed below TN. The Pr3+ magnetic moment is aligned along the crystallographic c-axis with an ordered moment of 1.694(3) μBat 4K, which is smaller than the effective moment of the free Pr3+ ion of 3.58 μB.PrPd0.82Bi2 can be grown as large as 1 mm×1 cm in area with a layered shape, and is very easy to be cleaved, providing a unique opportunity to study the interplay between magnetism, possible heavy fermions, and superconductivity.
基金Supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0302900,2016YFA0300500,2018YFA0704200,2017YFA0303100,and 2016YFA0300600)the National Natural Science Foundation of China(Grant Nos.11874401,11674406,11674372,11961160699,11774399,12061130200,11974392,and 11822411)+4 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant Nos.XDB25000000,XDB07020000,XDB33000000,and XDB28000000)the Beijing Natural Science Foundation(Grant Nos.Z180008 and JQ19002)Guangdong Introducing Innovative and Entrepreneurial Teams(Grant No.2017ZT07C062)the Youth Innovation Promotion Association of CAS(Grant No.2016004)the Royal Society-Newton Advanced Fellowship(Grant No.NAF∖R1∖201248).
文摘We systematically investigate the magnetic properties of Cu4-xZnx(OH)6FBr using the neutron diffraction and muon spin rotation and relaxation(μSR) techniques.Neutron-diffraction measurements suggest that the longrange magnetic order and the orthorhombic nuclear structure in the x=0 sample can persist up to x=0.23 and 0.43,respectively.The temperature dependence of the zero-field μSR spectra provides two characteristic temperatures,TA0 and Tλ,which are associated with the initial drop close to zero time and the long-time exponential decay of the muon relaxation,respectively.Comparison between TA0 and TM from previously reported magnetic-susceptibility measurements suggest that the former comes from the short-range interlayer-spin clusters that persist up to x=0.82.On the other hand,the doping level where Tλ becomes zero is about 0.66,which is much higher than threshold of the long-range order,i.e.,~0.4.Our results suggest that the change in the nuclear structure may alter the spin dynamics of the kagome layers and a gapped quantum-spin-liquid state may exist above x=0.66 with the perfect kagome planes.
基金supported by National Key Research and Development Program of China(Grant No.2021YFA1400400)the National Natural Science Foundation of China(Grant Nos.11822405,12074174,12074175,11774152,11904170,12004249,12004251,and 12004191)+3 种基金the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20180006,BK20190436 and BK20200738)the Shanghai Sailing Program(Grant Nos.20YF1430600 and21YF1429200)the Fundamental Research Funds for the Central Universities(Grant No.020414380183)the Office of International Cooperation and Exchanges of Nanjing University。
文摘It is known that α-RuCl_(3) has been studied extensively because of its proximity to the Kitaev quantum-spin-liquid(QSL)phase and the possibility of approaching it by tuning the competing interactions.Here we present the first polarized inelastic neutron scattering study on α-RuCl_(3) single crystals to explore the scattering continuum around the Γ point at the Brillouin zone center,which was hypothesized to be resulting from the Kitaev QSL state but without concrete evidence.With polarization analyses,we find that,while the spin-wave excitations around the Γ point vanish above the transition temperature T_(N),the pure magnetic continuous excitations around the Γ point are robust against temperature.Furthermore,by calculating the dynamical spin-spin correlation function using the cluster perturbation theory,we derive magnetic dispersion spectra based on the K-Γ model,which involves with a ferromagnetic Kitaev interaction of −7.2 meV and an off-diagonal interaction of 5.6 meV.We find this model can reproduce not only the spin-wave excitation spectra around the Γ point,but also the non-spin-wave continuous magnetic excitations around the Γ point.These results provide evidence for the existence of fractional excitations around the Γ point originating from the Kitaev QSL state,and further support the validity of the K-Γ model as the effective minimal spin model to describe α-RuCl_(3).
基金support from Deutsche Forschungsgemeinschaft under Germany s excellence strategy-EXC 2089/1-390776260Germany’s excellence cluster“e-conversion”,DFG project BA 5795/4-1funding from the TUM IGSSE project 11.01 are gratefully acknowledged.We also acknowledge DESY(Hamburg,Germany),a member of the Helmholtz Association HGF,for the provision of experimental facilities.Parts of this research were carried out at PETRA III using beamline P02.1.We acknowledge CzechNanoLab Research Infrastructure supported by MEYS CR (LM2018110) and CEITEC Nano Research Infrastructure for TEM measurements.
文摘In this work,we demonstrate the power of a simple top-down electrochemical erosion approach to obtain Pt nanoparticle with controlled shapes and sizes(in the range from-2 to-10 nm).Carbon supported nanoparticles with narrow size distributions have been synthesized by applying an alternating voltage to macroscopic bulk platinum structures,such as disks or wires.Without using any surfactants,the size and shape of the particles can be changed by adjusting simple parameters such as the applied potential,frequency and electrolyte composition.For instance,application of a sinusoidal AC voltage with lower frequencies results in cubic nanoparticles;whereas higher frequencies lead to predominantly spherical nanoparticles.On the other hand,the amplitude of the,sinusoidal signal was found to affect the particle size;the lower the amplitude of the applied AC signal,the smaller the resulting particle size.Pt/C catalysts prepared by this approach showed 0.76 A/mg mass activity towards the oxygen reduction reaction which is-2 times higher than the state-of-the-art commercial Pt/C catalyst(0.42 A/mg)from Tanaka.In addition to this,we discussed the mechanistic insights about the nanoparticle formation pathways.
基金supported by the Innovation Program of Shanghai Municipal Education Commission(2017–01-07–00-07-E00018)the National Key R&D Program of the MOST of China(2016YFA0300203,2016YFA0300500,2016YFA0301001,and 2018YFE0103200)+6 种基金the National Natural Science Foundation of China(11874119)Shanghai Municipal Science and Technology Major Project(2019SHZDZX04)the Hong Kong Research Grants Council(17303819 and 17306520)supported by the National Natural Science Foundation of China(11875265)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(3He based neutron polarization devices)the Institute of High Energy Physicsthe Chinese Academy of Sciences。
文摘We report thermodynamic and neutron scattering measurements of the triangular-lattice quantum Ising magnet TmMgGaO_(4)in longitudinal magnetic fields.Our experiments reveal a quasi-plateau state induced by quantum fluctuations.This state exhibits an unconventional non-monotonic field and temperature dependence of the magnetic order and excitation gap.In the high field regime where the quantum fluctuations are largely suppressed,we observed a disordered state with coherent magnon-like excitations despite the suppression of the spin excitation intensity.Through detailed semi-classical calculations,we are able to understand these behaviors quantitatively from the subtle competition between quantum fluctuations and frustrated Ising interactions.