期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
半透膜仪采集空气中多氯联苯采样速度与其结构和性质定量构效关系研究(英文) 被引量:4
1
作者 朱秀华 丁光辉 +3 位作者 Walkiria Levy Karl-Werner Schramm 王炜 穆军 《计算机与应用化学》 CAS CSCD 北大核心 2011年第1期6-10,共5页
根据MOPAC2009软件包中PM6算法得到的分子描述符研究半透膜仪(SPMDs)采集大气中多氯联苯(PCBs)采样速度(R_(air))的定量构效关系(QSPR)模型,并分析影响R_(air)的关键因素。以半经验PM6算法得到的分子量子化学描述符作为预测变量,采用偏... 根据MOPAC2009软件包中PM6算法得到的分子描述符研究半透膜仪(SPMDs)采集大气中多氯联苯(PCBs)采样速度(R_(air))的定量构效关系(QSPR)模型,并分析影响R_(air)的关键因素。以半经验PM6算法得到的分子量子化学描述符作为预测变量,采用偏最小二乘算法(PLS)构建了R_(air)的QSPR模型。根据交叉验证,所得到的最佳模型中PLS成分解释的因变量的累积变异(Q^2_(cum))为0.683,这表明该模型具有良好的预测能力和稳健性。通过外部验证和将实验测得的R_(air)与预测得到的R_(air)进行比较,对所构建模型的稳定性和可靠性进行了验证,结果表明无论是训练组还是预测组,其预测值与实测值间均具有较好的线性关系,线性相关系数均大于0.8376。对PCBs采样速度R_(air)的主要影响因素为PCBs与SPMDs中甘油三油酸酯分子间的相互作用大小和为将PCBs溶解在甘油三油酸酯中形成洞穴所需能量要求。 展开更多
关键词 空气采样速度 SPMD PCB PLS QSPR
原文传递
Spatial metabolomics for evaluating response to neoadjuvant therapy in non-small cell lung cancer patients 被引量:5
2
作者 Jian Shen Na Sun +9 位作者 Philipp Zens Thomas Kunzke Achim Buck Verena M.Prade Jun Wang Qian Wang Ronggui Hu Annette Feuchtinger Sabina Berezowska Axel Walch 《Cancer Communications》 SCIE 2022年第6期517-535,共19页
Background:The response to neoadjuvant chemotherapy(NAC)differs substantially among individual patients with non-small cell lung cancer(NSCLC).Major pathological response(MPR)is a histomorphological read-out used to a... Background:The response to neoadjuvant chemotherapy(NAC)differs substantially among individual patients with non-small cell lung cancer(NSCLC).Major pathological response(MPR)is a histomorphological read-out used to assess treatment response and prognosis in patientsNSCLC afterNAC.Although spatial metabolomics is a promising tool for evaluating metabolic phenotypes,it has not yet been utilized to assess therapy responses in patients with NSCLC.We evaluated the potential application of spatial metabolomics in cancer tissues to assess the response to NAC,using a metabolic classifier that utilizes mass spectrometry imaging combined with machine learning.Methods:Resected NSCLC tissue specimens obtained after NAC(n=88)were subjected to high-resolution mass spectrometry,and these data were used to develop an approach for assessing the response to NAC in patients with NSCLC.The specificities of the generated tumor cell and stroma classifiers were validated by applying this approach to a cohort of biologically matched chemotherapy-naive patients with NSCLC(n=85).Results:The developed tumor cell metabolic classifier stratified patients into different prognostic groups with 81.6%accuracy,whereas the stroma metabolic classifier displayed 78.4%accuracy.By contrast,the accuracies of MPR and TNM staging for stratification were 62.5%and 54.1%,respectively.The combination of metabolic and MPR classifiers showed slightly lower accuracy than either individual metabolic classifier.In multivariate analysis,metabolic classifiers were the only independent prognostic factors identified(tumor:P=0.001,hazards ratio[HR]=3.823,95%confidence interval[CI]=1.716-8.514;stroma:P=0.049,HR=2.180,95%CI=1.004-4.737),whereasMPR(P=0.804;HR=0.913;95%CI=0.445-1.874)and TNM staging(P=0.078;HR=1.223;95%CI=0.977-1.550)were not independent prognostic factors.Using Kaplan-Meier survival analyses,both tumor and stroma metabolic classifiers were able to further stratify patients as NAC responders(P<0.001)and non-responders(P<0.001).Conclusions:Our findings indicate that the metabolic constitutions of both tumor cells and the stroma are valuable additions to the classical histomorphology-based assessment of tumor response. 展开更多
关键词 cancer metabolism machine learning mass spectrometry imaging metabolic classifier Nonsmall cell lung cancer PROGNOSIS spatial metabolomics treatment response
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部