期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Internal failure of anode materials for lithium batteriesd——A critical review 被引量:8
1
作者 Xiangqi Meng Yaolin Xu +5 位作者 Hongbin Cao Xiao Lin Pengge Ning Yi Zhang Yaiza Gonzalez Garcia Zhi Sun 《Green Energy & Environment》 CSCD 2020年第1期22-36,共15页
Prevention of mechanical and finally electrochemical failures of lithium batteries is a critical aspect to be considered during their design and performance, especially for those with high specific capacities. Interna... Prevention of mechanical and finally electrochemical failures of lithium batteries is a critical aspect to be considered during their design and performance, especially for those with high specific capacities. Internal failure is observed as one of the most serious factors, including loss of electrode materials, structure deformation and dendrite growth. It usually incubates from atomic/molecular level and progressively aggravates along with lithiation. Understanding the internal failure is of great importance for developing solutions of failure prevention and advanced anode materials. In this research, different internal failure processes of anode materials for lithium batteries are discussed. The progress on observation technologies of the anode failure is further summarized in order to understand their mechanisms of internal failure. On top of them, this review aims to summarize innovative methods to investigate the anode failure mechanisms and to gain new insights to develop advanced and stable anodes for lithium batteries. 展开更多
关键词 Lithium battery Anode materials Internal failure
下载PDF
Dynamic carbon surface chemistry: Revealing the role of carbon in electrolytic water oxidation
2
作者 Yuxiao Ding Qingqing Gu +9 位作者 Alexander Klyushin Xing Huang Sakeb H.Choudhury Ioannis Spanos Feihong Song Rik Mom Pascal Dungen Anna K.Mechler Robert Schlogl Saskia Heumann 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期155-159,I0006,共6页
Carbon materials have been widely used as electrodes, but the mechanistic roles are still not clear due to the complexity of the carbon surface chemistry. Herein we clarify that intrinsic material properties of carbon... Carbon materials have been widely used as electrodes, but the mechanistic roles are still not clear due to the complexity of the carbon surface chemistry. Herein we clarify that intrinsic material properties of carbon have to be activated by extrinsic factors. Pure carbon has no catalytic activity when used as electrode for electrocatalytic water oxidation. The evolution of oxygen functional groups on the carbon surface with increasing potential and the subsequent formation of real active sites with iron impurities from the electrolyte have been confirmed. These in-situ formed active sites protect the carbon from deep oxidation. This unprecedented finding not only provides insight into the dynamic evolution of carbon electrode surface chemistry and raises awareness of the need for detailed surface analysis under operando conditions, but also suggests a direction for the development of scalable and high-performance carbonbased electrode systems for various electrochemical applications. 展开更多
关键词 Carbon chemistry Carbon catalysis Carbon electrode Water splitting Iron impurity
下载PDF
Evidence for Magnetic Fractional Excitations in a Kitaev Quantum-Spin-Liquid Candidate α-RuCl_(3)
3
作者 冉柯静 王靖珲 +12 位作者 鲍嵩 蔡正蔚 上官艳艳 马祯 王巍 董召阳 P.Cermak A.Schneidewind 孟思勤 陆智伦 于顺利 李建新 温锦生 《Chinese Physics Letters》 SCIE EI CAS CSCD 2022年第2期72-77,共6页
It is known that α-RuCl_(3) has been studied extensively because of its proximity to the Kitaev quantum-spin-liquid(QSL)phase and the possibility of approaching it by tuning the competing interactions.Here we present... It is known that α-RuCl_(3) has been studied extensively because of its proximity to the Kitaev quantum-spin-liquid(QSL)phase and the possibility of approaching it by tuning the competing interactions.Here we present the first polarized inelastic neutron scattering study on α-RuCl_(3) single crystals to explore the scattering continuum around the Γ point at the Brillouin zone center,which was hypothesized to be resulting from the Kitaev QSL state but without concrete evidence.With polarization analyses,we find that,while the spin-wave excitations around the Γ point vanish above the transition temperature T_(N),the pure magnetic continuous excitations around the Γ point are robust against temperature.Furthermore,by calculating the dynamical spin-spin correlation function using the cluster perturbation theory,we derive magnetic dispersion spectra based on the K-Γ model,which involves with a ferromagnetic Kitaev interaction of −7.2 meV and an off-diagonal interaction of 5.6 meV.We find this model can reproduce not only the spin-wave excitation spectra around the Γ point,but also the non-spin-wave continuous magnetic excitations around the Γ point.These results provide evidence for the existence of fractional excitations around the Γ point originating from the Kitaev QSL state,and further support the validity of the K-Γ model as the effective minimal spin model to describe α-RuCl_(3). 展开更多
关键词 temperature EXCITATION DIAGONAL
下载PDF
A brief review on/μSR studies of unconventional Fe-and Cr-based superconductors 被引量:1
4
作者 A.Bhattacharyya D.T.Adroja +1 位作者 M.Smidman V.K.Anand 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2018年第12期3-24,共22页
Muon spin relaxation/rotation(μSR) is a vital technique for probing the superconducting gap structure, pairing symmetry and time reversal symmetry breaking, enabling an understanding of the mechanisms behind the unco... Muon spin relaxation/rotation(μSR) is a vital technique for probing the superconducting gap structure, pairing symmetry and time reversal symmetry breaking, enabling an understanding of the mechanisms behind the unconventional superconductivity of cuprates and Fe-based high-temperature superconductors, which remain a puzzle. Very recently double layered Fe-based superconductors having quasi-2 D crystal structures and Cr-based superconductors with a quasi-1D structure have drawn considerable attention. Here we present a brief review of the characteristics of a few selected Fe-and Cr-based superconducting materials and highlight some of the major outstanding problems, with an emphasis on the superconducting pairing symmetries of these materials. We focus on μSR studies of the newly discovered superconductors ACa_2Fe_4As_4F_2(A = K, Rb, and Cs), ThFeAsN, and A_2Cr_3As_3(A = K, Cs), which were used to determine the superconducting gap structures, the presence of spin fluctuations, and to search for time reversal symmetry breaking in the superconducting states. We also briefly discuss the results of μSR investigations of the superconductivity in hole and electron doped BaFe_2As_2. 展开更多
关键词 UNCONVENTIONAL SUPERCONDUCTORS iron-based SUPERCONDUCTORS Cr-based SUPERCONDUCTORS superconducting pairing SYMMETRY time reversal SYMMETRY muon spin rotation/relaxation
原文传递
Three-dimensional structured on-chip stacked zone plates for nanoscale X-ray imaging with high efficiency
5
作者 Stephan Werner Stefan Rehbein Peter Guttmann Gerd Schneider 《Nano Research》 SCIE EI CAS CSCD 2014年第4期528-535,共8页
关键词 X射线成像 三维结构 纳米级 叠带 高空间分辨率 菲涅耳波带片 上层 光学器件
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部