Eu-doped GaOOH nanoparticles with size of 5-8 nm were prepared by hydrothermal method using sodium dodecylbenzene sulfonate (SDBS) as surfactant. Eu-doped α-Ga2O3 and β-Ga2O3 were further fabricated by annealing G...Eu-doped GaOOH nanoparticles with size of 5-8 nm were prepared by hydrothermal method using sodium dodecylbenzene sulfonate (SDBS) as surfactant. Eu-doped α-Ga2O3 and β-Ga2O3 were further fabricated by annealing GaOOH:Eu and then characterized by X-ray diffraction(XRD), transmission electron microscopy (TEM) and photoluminescence (PL). The TEM results show that monodisperse Eu^3+-doped GaOOH nanoparticles form and then transform into Eu^3+-doped a-Ga2O3 and β-Ga2O3 through annealing the GaOOH:Eu nanoparticles at 600 and 900℃, respectively. PL studies indicate that GaOOH:Eu has the highest intensity at 618 nm. Luminescence quenching is observed at higher Eu3+concentration in all samples.展开更多
基金Project(50772133) supported by the National Natural Science Foundation of ChinaProject(LA 09014) supported by Innovation Projects for Graduates of Center South University,China
文摘Eu-doped GaOOH nanoparticles with size of 5-8 nm were prepared by hydrothermal method using sodium dodecylbenzene sulfonate (SDBS) as surfactant. Eu-doped α-Ga2O3 and β-Ga2O3 were further fabricated by annealing GaOOH:Eu and then characterized by X-ray diffraction(XRD), transmission electron microscopy (TEM) and photoluminescence (PL). The TEM results show that monodisperse Eu^3+-doped GaOOH nanoparticles form and then transform into Eu^3+-doped a-Ga2O3 and β-Ga2O3 through annealing the GaOOH:Eu nanoparticles at 600 and 900℃, respectively. PL studies indicate that GaOOH:Eu has the highest intensity at 618 nm. Luminescence quenching is observed at higher Eu3+concentration in all samples.