Ammonia(NH3)is an ideal nitrogen source in terms of availability,reactivity,safety,atom economy,environmental compatibility,and ease of isolation.However,its utility for amine synthesis is limited by its high bond dis...Ammonia(NH3)is an ideal nitrogen source in terms of availability,reactivity,safety,atom economy,environmental compatibility,and ease of isolation.However,its utility for amine synthesis is limited by its high bond dissociation energy,its strong coordination ability,and the difference between its reactivity and that of the product amines.Herein,we reported the first electrochemical protocol for direct syntheses of unprotected tetrasubstituted aziridines with NH3 and alkenes in the absence of an oxidant,which are highly challenging to achieve by other methods.The combination of graphite felt as the anode material and MeOH as the solvent was the key to the success of the protocol,and the effects of these factors were investigated by means of cyclic voltammetry and density functional theory calculations.展开更多
基金supported by the National Natural Science Foundation of China(nos.22071105,22031008,21803030,and 22001089)QingLan Project of Jiangsu Education Department,and the Jiangsu Innovation&Entrepreneurship Talents Plan in China.J.L.appreciates the support from the Nature Science Foundation of Jiangsu Province(no.BK20191046).
文摘Ammonia(NH3)is an ideal nitrogen source in terms of availability,reactivity,safety,atom economy,environmental compatibility,and ease of isolation.However,its utility for amine synthesis is limited by its high bond dissociation energy,its strong coordination ability,and the difference between its reactivity and that of the product amines.Herein,we reported the first electrochemical protocol for direct syntheses of unprotected tetrasubstituted aziridines with NH3 and alkenes in the absence of an oxidant,which are highly challenging to achieve by other methods.The combination of graphite felt as the anode material and MeOH as the solvent was the key to the success of the protocol,and the effects of these factors were investigated by means of cyclic voltammetry and density functional theory calculations.