期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
A Mathematical Modeling of 3D Cubical Geometry Hypothetical Reservoir under the Effect of Nanoparticles Flow Rate,Porosity,and Relative Permeability
1
作者 Mudasar Zafar Hamzah Sakidin +6 位作者 Abida Hussain Loshini Thiruchelvam Mikhail Sheremet Iskandar Dzulkarnain Roslinda Nazar Abdullah Al-Yaari Rizwan Safdar 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1193-1211,共19页
This study aims to formulate a steady-state mathematical model for a three-dimensional permeable enclosure(cavity)to determine the oil extraction rate using three distinct nanoparticles,SiO_(2),Al_(2)O_(3),and Fe_(2)O... This study aims to formulate a steady-state mathematical model for a three-dimensional permeable enclosure(cavity)to determine the oil extraction rate using three distinct nanoparticles,SiO_(2),Al_(2)O_(3),and Fe_(2)O_(3),in unconventional oil reservoirs.The simulation is conducted for different parameters of volume fractions,porosities,and mass flow rates to determine the optimal oil recovery.The impact of nanoparticles on relative permeability(kr)and water is also investigated.The simulation process utilizes the finite volume ANSYS Fluent.The study results showed that when the mass flow rate at the inlet is low,oil recovery goes up.In addition,they indicated that silicon nanoparticles are better at getting oil out of the ground(i.e.,oil reservoir)than Al_(2)O_(3)and Fe_(2)O_(3).Most oil can be extracted from SiO_(2),Al_(2)O_(3),and Fe_(2)O_(3)at a rate of 97.8%,96.5%,and 88%,respectively. 展开更多
关键词 Unconventional reservoir cubical cavity oil recovery rate reservoir engineering mathematical modeling
下载PDF
Extraction and Characterization of Litopenaeus vannamei’s Shell as Potential Sources of Chitosan Biopolymers
2
作者 Che Engku Noramalina Che Engku Chik Amyra Suryatie Kamaruzzan +4 位作者 Ahmad Ideris Abdul Rahim Fathurrahman Lananan Azizah Endut Siti Aslamyah Nor Azman Kasan 《Journal of Renewable Materials》 SCIE EI 2023年第3期1181-1197,共17页
Chitin is the second most abundant polysaccharide,produced mainly as an industrial waste stream during crustacean processing.Chitin can be derived into chitosan through the deacetylation process.Conversion of shrimp w... Chitin is the second most abundant polysaccharide,produced mainly as an industrial waste stream during crustacean processing.Chitin can be derived into chitosan through the deacetylation process.Conversion of shrimp waste into chitosan via the deacetylation process could be considered a practical approach for shell waste remediation.In this study,chitosan’s physicochemical characteristics extracted from two types of Pacific white leg shrimp,L.vannamei’s shell(i.e.,rough and smooth),were compared with commercial chitosan.The yield,moisture,ash,solubility,water and fat binding capacity were measured.The degree of deacetylation(DDA)was calculated using FTIR,and their chemical Structure was confirmed using XRD and SEM-EDS.Both extracted chitosan showed no significant difference in yield,moisture,ash,solubility and water binding capacity but showed a significant difference with commercial chitosan.Moreover,the fat binding capacity of commercial chitosan showed the lowest percentage(408.34±0.83%)as compared to extracted chitosan(smooth shell 549.59±12.48%;rough shell 500.55±12.10%).The DDA indicated that extracted chitosan from the smooth and rough shell was considered good chitosan as compared to commercial chitosan with 84.08±1.27%,80.78±0.79%and 74.99±1.48%,respectively.Additionally,the presence of hydroxyl and amino groups from FTIR and a good crystallinity index was recorded using XRD of extracted chitosan.Based on observed characteristics,shrimp shell waste from L.vannamei can achieve chitosan standard quality as a biopolymer and highly potential to be applied in various industrial applications. 展开更多
关键词 CHITIN CHITOSAN degree of deacetylation L.vannamei shrimp shell surface morphology
下载PDF
Energy,economic and environmental assessment of photocatalytic methane production:a comparative case study between Japan and Malaysia
3
作者 Yudai Tanaka M.Hasanuzzaman 《Global Energy Interconnection》 EI CAS CSCD 2022年第2期192-205,共14页
Photocatalytic methane(CH_(4))production wherein CO_(2)is reduced to CH_(4) by utilizing solar radiation energy is gaining research and industrial focus because of its environmental-friendly notion.It offers twofold a... Photocatalytic methane(CH_(4))production wherein CO_(2)is reduced to CH_(4) by utilizing solar radiation energy is gaining research and industrial focus because of its environmental-friendly notion.It offers twofold advantages:reduction in CO_(2)emission and production of artificial natural gas(methane)at the same time.In this paper,comparative energy,economic and environmental assessment of such photocatalytic methane production has been carried out between Japan and Malaysian conditions.Assumptions on the photocatalytic methane production plant and estimation of energy production,CO_(2)emission reduction,and economic indicators are made based on previous research and existing technologies.Energy analysis shows that Malaysia has a higher potential for energy production and CO_(2)emission reduction than Japan.Economic analysis reveals that the feasible reaction efficiencies of the plant in Japan and Malaysia are 8%.The slightly higher conversion efficiency in Malaysia is due to the energy price and CO_(2)tax.For the implementation of the photocatalytic methane production plant,the high energy price and CO_(2)tax will work as a driving force. 展开更多
关键词 PHOTOCATALYSIS CO_(2)reduction Photocatalytic methane production CO_(2)tax
下载PDF
Advancements in the Development of Various Types of Dye-Sensitized Solar Cells:A Comparative Review
4
作者 Sandhia Bai A.K.Amirruddin +4 位作者 A.K.Pandey M.Samykano Muhammad Shakeel Ahmad Kamal Sharma V.V.Tyagi 《Energy Engineering》 EI 2021年第4期737-759,共23页
The global increase in energy demand has resulted in the depletion of non-renewable resources and caused environmental degradation.Consequently,emerging renewable technologies are a potential solution to fulfil energy... The global increase in energy demand has resulted in the depletion of non-renewable resources and caused environmental degradation.Consequently,emerging renewable technologies are a potential solution to fulfil energy demand and mitigate the effect of global warming.Low-cost solar energy harvesting technologies are most feasible technologies.Various solar cells technologies have been developed with improved overall performance and conversion effi-ciency.However,due to low cost and a wide range of applications,dye-sensitized solar cells(DSSCs)have been immensely focused on one of the most promising third-generation solar cells.The highest conversion efficiency of DSSC achieved after three decades of research is more than 14%,but the commercialization of this technology is still a challenge.In this review paper,an attempt has been made to present the comparison of different articles published,that gives the in-depth study of recent developments in various types of DSSCs based on architectural assembly and physical appearance.An overview of the limitations and challenges with their possible improvement strategies have also been discussed.This review paper concludes that appropriate selection of electrolytes dramatically affects the performance of DSSC,and quasi-solid-state electrolyte proves to be a better option.Besides,it also concludes that tandem structures are widely agreed with the approach to expand light utilization spectrum for an overall increase in its performance.However,still,the research is required,which could efficiently widen the applications of the DSSCs. 展开更多
关键词 Dye-sensitized solar cells solar energy architectural assembly quasi-solid electrolyte tandem structures
下载PDF
Growth performance,fatty acid profile,gut,and muscle histo-morphology of Malaysian mahseer,Tor tambroides post larvae fed short-term host associated probiotics 被引量:1
5
作者 Mohammod Kamruzzaman Hossain Sairatul Dahlianis Ishak +3 位作者 Shumpei Iehata Mat Noordin Noordiyana Md Abdul Kader Ambok Bolong Abol-Munafi 《Aquaculture and Fisheries》 CSCD 2024年第1期35-45,共11页
Host associated probiotics(HAPs)provide health benefits to the host when administered as dietary supplement.However,a short-term probiotics application strategy has yet to be optimized.A 90-days study was conducted to... Host associated probiotics(HAPs)provide health benefits to the host when administered as dietary supplement.However,a short-term probiotics application strategy has yet to be optimized.A 90-days study was conducted to evaluate the response of Malaysian mahseer,Tor tambroides post larvae fed with basal diet enriched HAPs for 30-days,and its response following another 60-days feeding with only basal diet.Three experimental diets(Enterococcus faecalis strain 2674(T1),Aeromonas sp.strain A8-29(T2)and E.faecalis strain FC11682(T3))were prepared by spray-coating each HAPs on a basal diet at 1×108 CFU/g feed.Differences in growth performances,whole-body proximate and fatty acid composition,muscle morphometry,and gut morphology were evaluated.Results showed that after 30 days,T3 fish produced highest growth.All HAP treatment groups showed better muscle distribution profile,improved fatty acid composition,and higher villus length,width and area,than control group.After 90 days,the growth of T3 fish was still the highest.Muscle distribution profile and villus growth were higher in HAP treatments,although only total n-6 PUFA,total MUFA,linoleic acids,and linolenic acids in HAP treated fish remained high after probiotics withdrawal.No difference in whole-body proximate composition was observed in both 30 and 90 days.Collective findings demonstrated that short-term application of HAPs at an early stage could be used to boost T.tambroides growth,with E.faecalis strain FC11682 showing the best efficacy. 展开更多
关键词 Enhance culture Enterococcus faecalis Aeromonas sp. Muscle hypertrophy Short-term feeding Tor tambroides
原文传递
Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review
6
作者 Guiyang Zheng Xuelian Kang +7 位作者 Haoran Ye Wei Fan Christian Sonne Su Shiung Lam Rock Keey Liew Changlei Xia Yang Shi Shengbo Ge 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期73-85,共13页
Humans have relied on biomass for survival and development since the Stone Age. All aspects of human needs for materials are covered by tools, fuel, and buildings. Nowadays, metals and petroleum-based materials are wi... Humans have relied on biomass for survival and development since the Stone Age. All aspects of human needs for materials are covered by tools, fuel, and buildings. Nowadays, metals and petroleum-based materials are widely used in highly developed industries. Unfortunately, environmental contamination and the loss of natural resources have led to the reemergence of biomass resources as efficient and sustainable energy sources. Notably, simple and direct applications can no longer meet the demand for functionalization, high performance of materials and construction materials. Therefore, it is imperative to modify biomass and combine its utilisation to produce functionalization and high performance materials. For example, construction materials with superior mechanical properties and water resistance can be produced by reinforcing fibres to facilitate crosslinking. Water-oil separation or adsorption effects of hydrogels and aerogels are determined by the porosity and lightness of biomass, biocomposite conductor is prepared by chimaeric conductive material. Here, we review the approaches that have been taken to devise an environmentally friendly yet fully recyclable and sustainable functionalised biocomposites from biomass and its potential directions for future research. 展开更多
关键词 BIOCOMPOSITE RENEWABLE Sustainability Advanced functional material Pollution mitigation
原文传递
Thermal pyrolysis conversion of methane to hydrogen(H_(2)):A review on process parameters,reaction kinetics and techno-economic analysis
7
作者 Yi Herng Chan Zhe Phak Chan +7 位作者 Serene Sow Mun Lock Chung Loong Yiin Shin Ying Foong Mee Kee Wong Muhammad Anwar Ishak Ven Chian Quek Shengbo Ge Su Shiung Lam 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第8期62-73,共12页
Hydrogen(H_(2))is a promising renewable energy which finds wide applications as the world gears toward low-carbon economy.However,current H_(2) production via steam methane reforming of natural gas or gasification of ... Hydrogen(H_(2))is a promising renewable energy which finds wide applications as the world gears toward low-carbon economy.However,current H_(2) production via steam methane reforming of natural gas or gasification of coal are laden with high CO_(2) footprints.Recently,methane(CH_(4))pyrolysis has emerged as a potential technology to generate low-carbon H_(2) and solid carbon.In this review,the current state-of-art and recent progress of H_(2) production from CH_(4) pyrolysis are reviewed in detail.Aspects such as funda-mental mechanism and chemistry involved,effect of process parameters on the conversion efficiency and reaction kinetics for various reaction media and catalysts are elucidated and critically discussed.Temper-ature,among other factors,plays the most critical influence on the methane pyrolysis reaction.Molten metal/salt could lower the operating temperature of methane pyrolysis to<1000℃,whereas plasma technology usually operates in the regime of>1000℃.Based on the reaction kinetics,metal-based cata-lysts were more efficient in lowering the activation energy of the reaction to 29.5-88 kJ/mol from that of uncatalyzed reaction(147-420.7 kJ/mol).Besides,the current techno-economic performance of the pro-cess reveals that the levelized cost of H_(2) is directly influenced by the sales price of carbon(by-product)generated,which could offset the overall cost.Lastly,the main challenges of reactor design for efficient product separation and retrieval,as well as catalyst deactivation/poisoning need to be debottlenecked. 展开更多
关键词 PYROLYSIS METHANE HYDROGEN Reaction kinetics Techno-economic analysis
原文传递
Hybrid MPPT approach using Cuckoo Search and Grey Wolf Optimizer for PV systems under variant operating conditions 被引量:4
8
作者 Jinan Abdulhasan Salim Baraa M.Albaker +1 位作者 Muwafaq Shyaa Alwan M.Hasanuzzaman 《Global Energy Interconnection》 EI CAS CSCD 2022年第6期627-644,共18页
Photovoltaic(PV)systems are adversely affected by partial shading and non-uniform conditions.Meanwhile,the addition of a bypass shunt diode to each PV module prevents hotspots.It also produces numerous peaks in the PV... Photovoltaic(PV)systems are adversely affected by partial shading and non-uniform conditions.Meanwhile,the addition of a bypass shunt diode to each PV module prevents hotspots.It also produces numerous peaks in the PV array’s power-voltage characteristics,thereby trapping conventional maximum power point tracking(MPPT)methods in local peaks.Swarm optimization approaches can be used to address this issue.However,these strategies have an unreasonably long convergence time.The Grey Wolf Optimizer(GWO)is a fast and more dependable optimization algorithm.This renders it a good option for MPPT of PV systems operating in varying partial shading.The conventional GWO method involves a long conversion time,large steady-state oscillations,and a high failure rate.This work attempts to address these issues by combining Cuckoo Search(CS)with the GWO algorithm to improve the MPPT performance.The results of this approach are compared with those of conventional MPPT according to GWO and MPPT methods based on perturb and observe(P&O).A comparative analysis reveals that under non-uniform operating conditions,the hybrid GWO CS(GWOCS)approach presented in this article outperforms the GWO and P&O approaches. 展开更多
关键词 Cuckoo Search GWO MPPT Hybrid MPPT PV system Luo DC-DC converter
下载PDF
Global technological advancement and challenges of glazed window,facade system and vertical greenery-based energy savings in buildings:A comprehensive review 被引量:2
9
作者 M.Washim Akram M.Hasannuzaman +1 位作者 Erdem Cuce Pinar Mert Cuce 《Energy and Built Environment》 2023年第2期206-226,共21页
There are many factors that have a major influence on reducing the energy expenditure in building sector.This research aims at qualitative and quantitative assessment of those factors such as double glazed windows,ver... There are many factors that have a major influence on reducing the energy expenditure in building sector.This research aims at qualitative and quantitative assessment of those factors such as double glazed windows,ver-tical greenery systems(VGS),integrating of semi-transparent photovoltaic device with architectural design of buildings,energy saving by using heat reflecting coating,passive climate control methods,energy saving by shading,building energy performance enhancement by using optimisation technique,double skin green facade,etc.through a holistic and thematic approach.Amongst the aforesaid techniques,VGS is found the most reliable,efficient and sustainable solution.Attractive VGS can improve the urban environment,increase biodiversity,mit-igate pollution also results economic benefit of the buildings as like as energy savings and decreasing surface temperature.Four fundamental energy saving methods are used in VGS which are considered as passive energy saving mechanism.Firstly,interception of solar radiation due to the shadow risen by the vegetation;secondly,vegetation also provides thermal insulation;thirdly,plants evapotranspiration helps for evaporative cooling of building;finally,building blockage makes a variation of wind effect on building.The peak cooling load of ivy coated green building wall has been reduced by 28%.If a VGS is installed without windows and building fac-ing on west,east,south and north correspondingly,the reduction in the cooling load capacity of the building is observed to be up to 20,18,8 and 5%,respectively.Very high thermally resistive glazed areas on building envelope can be secured via thin film PV glazing and vacuum glazing products with an average U-value of 1.1 and 0.4 W/m 2 K,respectively.Energy use policies are also helpful to improve energy consumption scenario of buildings.For developing more energy-efficient,sustainable and eco-friendly buildings,these techniques might be helpful for the building designers and architects. 展开更多
关键词 Building Energy consumption Energy saving Vertical greenery Green facade
原文传递
The hidden risk of microplastic-associated pathogens in aquatic environments 被引量:1
10
作者 Huan Zhong Mengjie Wu +13 位作者 Christian Sonne Su Shiung Lam Raymond W.M.Kwong Yuelu Jiang Xiaoli Zhao Xuemei Sun Xuxiang Zhang Chengjun Li Yuanyuan Li Guangbo Qu Feng Jiang Huahong Shi Rong Ji Hongqiang Ren 《Eco-Environment & Health》 2023年第3期142-151,共10页
Increasing studies of plastisphere have raised public concern about microplastics(MPs)as vectors for pathogens,especially in aquatic environments.However,the extent to which pathogens affect human health through MPs r... Increasing studies of plastisphere have raised public concern about microplastics(MPs)as vectors for pathogens,especially in aquatic environments.However,the extent to which pathogens affect human health through MPs remains unclear,as controversies persist regarding the distinct pathogen colonization on MPs as well as the transmission routes and infection probability of MP-associated pathogens from water to humans.In this review,we critically discuss whether and how pathogens approach humans via MPs,shedding light on the potential health risks involved.Drawing on cutting-edge multidisciplinary research,we show that some MPs may facilitate the growth and long-range transmission of specific pathogens in aquatic environments,ultimately increasing the risk of infection in humans.We identify MP-and pathogen-rich settings,such as wastewater treatment plants,aquaculture farms,and swimming pools,as possible sites for human exposure to MP-associated pathogens.This review emphasizes the need for further research and targeted interventions to better understand and mitigate the potential health risks associated with MP-mediated pathogen transmission. 展开更多
关键词 Microplastics PATHOGENS COLONIZATION TRANSMISSION Public health
原文传递
Solar-driven photothermal catalytic CO_(2) conversion:a review
11
作者 Bachirou Guene Lougou Bo-Xi Geng +8 位作者 Ru-Ming Pan Wei Wang Tian-Tian Yan Fang-Hua Li Hao Zhang Oraléou SanguéDjandja Yong Shuai Meisam Tabatabaei Daniel Sabi Takou 《Rare Metals》 SCIE EI CAS CSCD 2024年第7期2913-2939,共27页
It is highly desirable to seek green and sustainable technologies,such as employing photo thermal effects to drive energy catalysis processes to address the high energy demand and associated environmental impacts indu... It is highly desirable to seek green and sustainable technologies,such as employing photo thermal effects to drive energy catalysis processes to address the high energy demand and associated environmental impacts induced by the current methods.The photothermocatalysis process is an emerging research area with great potential in efficiently converting solar energy through various catalytic reactions.However,achieving simultaneously high conversion efficiency,cyclability,and durability is still a daunting challenge.Thus,tremendous work is still needed to enhance solar photo thermal catalytic conversion and promote its large-scale applications.This review developed the principles of coupling solar photon and thermal fields underlying the photothermal effect,exploration of efficient nanocatalysts,development of optofluidic reactor model,and photo thermal synergistic-driven CO_(2) reduction mechanisms.The ultimate goal was to provide an effective approach that can effectively convert solar energy into photocarriers/hot-electrons and heat,and importantly,can couple them to regulate catalysis reaction pathways toward the production of value-added fuel and chemical energy. 展开更多
关键词 PHOTOCHEMISTRY PHOTOTHERMAL CO_(2)catalytic conversion NANOMATERIAL Solar fuels and chemicals
原文传递
Effects of Surface Treatments on Tensile, Thermal and Fibre-matrix Bond Strength of Coir and Pineapple Leaf Fibres with Poly Lactic Acid 被引量:3
12
作者 Ramengmawii Siakeng Mohammad Jawaid +1 位作者 Hidayah Ariffin Mohd Sapuan Salit 《Journal of Bionic Engineering》 SCIE EI CSCD 2018年第6期1035-1046,共12页
Coir Fibres (CF) and Pineapple Leaf Fibres (PALF) are valuable natural fibres which are abundantly available in Malaysia as agricultural wastes. The aim of this study is to investigate the effects of alkali (6%)... Coir Fibres (CF) and Pineapple Leaf Fibres (PALF) are valuable natural fibres which are abundantly available in Malaysia as agricultural wastes. The aim of this study is to investigate the effects of alkali (6%), silane (2%), and calcium hydroxide (6%) on tensile, morphological, thermal, and structural properties of CF and PALF to improve their interfacial bonding with Polylactic Acid (PLA) matrix. Scanning electron microscopy and Fourier transform infrared spectroscopy were used to observe the effectiveness of the chemical treat- ments in the removal of impurities. Alkali treated fibres yield the lowest fibre diameter and the highest Interfacial Stress Strength (IFSS). Thermogravimetric Analysis (TGA) shows improved thermal stability in silane treated CF and alkali treated PALF. It is assumed that fibre treatments can help to develop biodegradable CF and PALF reinforced PLA biocomposites for industrial applications. 展开更多
关键词 natural fibre surface treatment tensile properties fibre-matrix bond strength thermal properties
原文传递
A review of gynogenesis manipulation in aquatic animals 被引量:2
13
作者 Hidayah Manan A.B.Noor Hidayati +4 位作者 Nur Aina Lyana Adnan Amin-Safwan Hongyu Ma Nor Azman Kasan Mhd Ikhwanuddin 《Aquaculture and Fisheries》 2022年第1期1-6,共6页
Gynogenesis is an established technique to generate all female type offspring and this technique has been successfully induced diploid gynogens progeny in aquatic animals of fishes and crustaceans.Monosex culture of a... Gynogenesis is an established technique to generate all female type offspring and this technique has been successfully induced diploid gynogens progeny in aquatic animals of fishes and crustaceans.Monosex culture of all female shrimp and fishes were selected attribute to all female type offspring which have better size than male and help increase the market size and profitable.This article discusses on the protocol applied to produce gynogens progeny and the successful rate of gynogenesis production in fishes,molluscs and aquatic crustaceans of shrimps in general.Overall most of the UV length applied for irradiated the sperm were around 254-365 nm for(20-40 s),(20-80 s)and(5-8 s)for shrimps,254 nm,30 s for molluscs species and for fishes were around 254 nm for(1.5min)and(2-12 min)time of exposure respectively.For gynogenesis induction,the fertilized eggs were treated with cold shock,heat shock or cytochalasin-B for both shrimp and fishes gynogens technique.Fertilization rate was identified around 4.33%-19.67%in shrimp.Successful hatching rate was identified around 3.0%,14.9%-37.2%of gynogens offspring in shrimp and various percentages of hatching rates were identified from each species of fish gynogens.Overall,there is still low survival rate of gynogens produced using gynogenesis technique and further study should be carried out to improve the gynogens production.The discussed protocols serve as a guide lines for the gynogenesis technique application of all female monosex culture in the future. 展开更多
关键词 UV-Length Irradiated sperm Fertilized eggs Hatching rate Survival rate Gynogens
原文传递
Effect of tilt angle on the performance and electrical parameters of a PV module:Comparative indoor and outdoor experimental investigation 被引量:2
14
作者 M.A.A.Mamun M.M.Islam +1 位作者 M.Hasanuzzaman Jeyraj Selvaraj 《Energy and Built Environment》 2022年第3期278-290,共13页
Photovoltaic(PV)system’s performance is significantly affected by its orientation and tilt angle.Experimental investigation(indoor and outdoor)has been carried out to trace the variation in PV performance and electri... Photovoltaic(PV)system’s performance is significantly affected by its orientation and tilt angle.Experimental investigation(indoor and outdoor)has been carried out to trace the variation in PV performance and electrical parameters at varying tilt angles in Malaysian conditions.There were two experimental modus:1)varying module tilt under constant irradiation level,2)varying irradiation intensity at the optimum tilt set up.For the former scheme,the irradiation level was maintained at 750 W/m^(2),and for the later arrangement,the module tilt angle was varied from 0 o to 80 o by means of a single-axis tracker.Results show that under constant irradiation of 750 W/m^(2),every 5 o increase in tilt angle causes a power drop of 2.09 W at indoor and 3.45 W at outdoor.In contrast,for the same condition,efficiency decreases by 0.54%for indoor case and by 0.76%at outdoor.On the other hand,for every 100 W/m^(2)increase in irradiation,solar cell temperature rises by 7.52℃at indoor and by 5.67℃at outdoor.As of module electrical parameters,open-circuit voltage,short-circuit current,maximum power point voltage and maximum power point current drops substantially with increasing tilt angle,whereas fill factor drops rather gradually.Outdoor experimental investigation confirms that the optimum tilt angle at Malaysian conditions is 15 o and orienting a PV module this angle will maximize the sun’s energy captured and thereby enhance its performance. 展开更多
关键词 PHOTOVOLTAIC Irradiation intensity Tilt angle PV performance Module electrical parameters
原文传递
Why is graphene an extraordinary material? A review based on a decade of research
15
作者 Sachin Sharma Ashok KUMAR Shahid BASHIR +1 位作者 Kasi RAMESH Subramaniam RAMESH 《Frontiers of Materials Science》 SCIE CSCD 2022年第2期1-39,共39页
During this decade,graphene which is a thin layer of carbon material along at ease with synthesis and functionalization has become a hot topic of research owing to excellent mechanical strength,very good current densi... During this decade,graphene which is a thin layer of carbon material along at ease with synthesis and functionalization has become a hot topic of research owing to excellent mechanical strength,very good current density,high thermal conductivity,superior electrical conductivity,large surface area,and good electron mobility.The research on graphene has exponentially accelerated specially when Geim and Novoselov developed and analyzed graphene.On this basis,for industrial application,researchers are exploring different techniques to produce high-quality graphene.Therefore,reviewed in this article is a brief introduction to graphene and its derivatives along with some of the methods developed to synthesize graphene and its prospective applications in both research and industry.In this work,recent advances on applications of graphene in various fields such as sensors,energy storage,energy harvesting,high-speed optoelectronics,supercapacitors,touch-based flexible screens,and organic light emitting diode displays have been summarized. 展开更多
关键词 GRAPHENE graphene oxide electrochemical sensor fuel cell SUPERCAPACITOR dye-sensitized fuel cell lithium battery energy storage
原文传递
Utilization of microwave steam pyrolysis to produce biochar for thermal energy storage
16
作者 Wahap bin Abu Bakar Peter Nai Yuh Yek +5 位作者 Kah Yein Cheong Augustine Chioma Affam Chee Chung Wong Rock Keey Liew Yie Hua Tan Su Shiung Lam 《Waste Disposal and Sustainable Energy》 2022年第4期335-341,共7页
Microwave steam pyrolysis(MSP)is an innovative thermochemical approach to converting biomass into high-quality biochar using steam to improve the dielectric heating of microwave radiation.Biochar shows high fixed carb... Microwave steam pyrolysis(MSP)is an innovative thermochemical approach to converting biomass into high-quality biochar using steam to improve the dielectric heating of microwave radiation.Biochar shows high fixed carbon and carbon contents at a maximum temperature of 550℃in 10 min.The MSP achieved a heating rate of 112℃/min from 200℃to 400℃to produce biochar effectively.Furthermore,the thermal properties of biochar in microwave heating were investigated in this study to explore its potential as a microwave heat-absorbent material.Microwave is able to perform volumetric and controllable heating to the biochar.Moreover,biochar shows good microwave heat absorbency,storing and transferring heat effectively.The temperature profile of three different sizes of biochar was investigated to examine the efficiency of biochar in heat absorption from microwave radiation.It was found that the powder form of biochar showed a higher heat transfer rate of 40℃/min and a low cooling rate of 7.5℃/min.The presented results are useful for evaluating the application of biochar as a promising medium for heat storage systems. 展开更多
关键词 MICROWAVE STEAM PYROLYSIS BIOCHAR Thermal Storage
原文传递
Microwave torrefaction of empty fruit bunch pellet:Simulation and validation of electric field and temperature distribution
17
作者 Peter Nai Yuh Yek Sieng Huat Kong +5 位作者 Ming Chiat Law Changlei Xia Rock Keey Liew Teck Sung Sie Jun Wei Lim Su Shiung Lam 《Journal of Bioresources and Bioproducts》 EI 2022年第4期270-277,共8页
Microwave simulation is significant in identifying a reactor design allowing the biomass to be heated and processed evenly.This study integrated the radio frequency and transient heat transfer modules to simulate the ... Microwave simulation is significant in identifying a reactor design allowing the biomass to be heated and processed evenly.This study integrated the radio frequency and transient heat transfer modules to simulate the microwave distribution and investigated the performance of microwave heating in the cavity.The simulation results were compared with the experimental findings us-ing the finite element analysis software of COMSOL MULTIPHYSICS to predict the temperature profile and electric field of microwave in the biomass(empty fruit bunch pellets).The higher temperature distribution was observed at the bottom and centre section of the empty fruit bunch pellet bed in the reactor,showing the uniqueness of microwave heating.According to the simula-tion results,the temperature profile obtained through the specific cavity geometry and dielectric properties agreed with the experimental temperature profile.The simulated temperature profile demonstrated a logarithmic increase of 120°C/min at the first 50 s followed by 50°C/min until 350 s.The experimental temperature profile showed three different heating rates before reaching 300°C,including 78.3°C/min(50-120°C),30.6°C/min(121-250°C),and 105°C/min(250-300°C).The results of this study might contribute to the improvement of microwave heating in biomass torrefaction. 展开更多
关键词 MICROWAVE TORREFACTION SIMULATION Energy Temperature
原文传递
Preparation,characterization and thermophysical properties investigation of A70/polyaniline nanocomposite phase change material for medium temperature solar applications
18
作者 A.K.Pandey Mathew George +3 位作者 Nasrudin Abd Rahim V.V.Tyagi Syed Shahabuddin R.Saidur 《Energy and Built Environment》 2021年第3期271-277,共7页
The ever-present demand for energy from various application in industrial and domestic processes has led to the consumption of fossil fuel at a rapid rate with adverse effect due to global warming.This study focuses o... The ever-present demand for energy from various application in industrial and domestic processes has led to the consumption of fossil fuel at a rapid rate with adverse effect due to global warming.This study focuses on the thermal energy storage aspect intended for medium temperature applications.A novel composite A70 and PANI was prepared and characterized.The study investigates the composites thermophysical and optical properties.Differential Scanning Calorimetry and Transient Hot Bridge measured thermal storage capacity and thermal conductivity of the composite,respectively.The heat storage capacity of the composite remained stable within 4%whereas a highest rise of 11.96%in thermal conductivity was measured.The composites thermal,chemical,and physical stability were analysed from Thermogravimetric Analyser,Fourier Infrared Transform,and Scanning Electron Microscope,respectively.The composites were thermally stable up to a temperature of 250°C.No chemical reaction occurred between the nanomaterial and base PCM matrix.The microscopic visuals did not show any considerable change in the microscopic structure of the material.In the case of optical properties,the composites showed significant reduction in transmittance of solar spectrum with respect to pure A70.The maximum decrement in transmission was around~89%compared to A70.As the composite prepared were thermally stable till 250°C,hence may be utilized for solar thermal and low concentrated photovoltaic application but not limited to these. 展开更多
关键词 Phase change materials Solar energy Thermal conductivity Latent heat POLYANILINE
原文传递
Vinyl chloride accident unleashes a toxic legacy 被引量:1
19
作者 Chengjun Li Peng Gao +4 位作者 Riqing Yu Huan Zhong Mengjie Wu Su Shiung Lam Christian Sonne 《Environmental Science and Ecotechnology》 SCIE 2023年第2期1-2,共2页
A railroad accident on February 3,2023,led to the release and combustion of 115,580 gallons,equivalent to over 437,000 L,of vinyl chloride monomer(VCM)in East Palestine,Ohio[1].This monomer is used in polyvinyl chlori... A railroad accident on February 3,2023,led to the release and combustion of 115,580 gallons,equivalent to over 437,000 L,of vinyl chloride monomer(VCM)in East Palestine,Ohio[1].This monomer is used in polyvinyl chloride(PVC)production,and its burning produces additional toxins such as hydrochloric acid and lethal phosgene,known as a notorious chemical weapon during World War I[2].Acute exposure to these chemicals causes immediate adverse effects on local ecosystems,including the deaths of wild and farmed animals and pets. 展开更多
关键词 MONOMER hydrochloric VINYL
原文传递
Man-made reactive oxygen species as green disinfectants
20
作者 Chengjun Li Huan Zhong +4 位作者 Guorui Liu Di Liu Mengjie Wu Su Shiung Lam Christian Sonne 《Eco-Environment & Health》 2023年第4期243-245,共3页
The ongoing pandemics boost the demand for chemical disinfectants,including surface disinfectants and hand sanitizers[1].This is largely driven by increasing public health awareness and hygiene standards in public and... The ongoing pandemics boost the demand for chemical disinfectants,including surface disinfectants and hand sanitizers[1].This is largely driven by increasing public health awareness and hygiene standards in public and private settings[2].The global surface disinfectant market size in 2019 was valued at US$3.4 billion and estimated to experience a 6.0%compound annual growth rate,reaching US$5.42 billion in 2027[3]. 展开更多
关键词 BOOST VALUED REACHING
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部