Skin-integrated electronics,also known as electronic skin(e-skin);are rapidly developing and are gradually being adopted in biomedical fields as well as in our daily lives.E-skin capable of providing sensitive and hig...Skin-integrated electronics,also known as electronic skin(e-skin);are rapidly developing and are gradually being adopted in biomedical fields as well as in our daily lives.E-skin capable of providing sensitive and high-resolution tactile sensations and haptic feedback to the human body would open a new e-skin paradigm for closed-loop human-machine interfaces.Here,we report a class of materials and mechanical designs for the miniaturization of mechanical actuators and strategies for their integration into thin,soft e-skin for haptic interfaces.The mechanical actuators exhibit small dimensions of 5 mm diameter and 1.45 mm thickness and work in an electromagnetically driven vibrotactile mode with resonance frequency overlapping the most sensitive frequency of human skin.Nine mini actuators can be integrated simultaneously in a small area of 2 cm×2 cm to form a 3×3 haptic feedback array,which is small and compact enough to mount on a thumb tip.Furthermore,the thin,soft haptic interface exhibits good mechanical properties that work properly during stretching,bending,and twisting and therefore can conformally fit onto various parts of the human body to afford programmable tactile enhancement and Braille recognition with an accuracy rate over 85%.展开更多
Muscle groups perform their functions in the human body via bilateral muscle actuation,which brings bionic inspiration to artificial robot design.Building soft robotic systems with artificial muscles and multiple cont...Muscle groups perform their functions in the human body via bilateral muscle actuation,which brings bionic inspiration to artificial robot design.Building soft robotic systems with artificial muscles and multiple control dimensions could be an effective means to develop highly controllable soft robots.Here,we report a bilateral actuator with a bilateral deformation function similar to that of a muscle group that can be used for soft robots.To construct this bilateral actuator,a low-cost VHB 4910 dielectric elastomer was selected as the artificial muscle,and polymer films manufactured with specific shapes served as the actuator frame.By end-to-end connecting these bilateral actuators,a gear-shaped 3D soft robot with diverse motion capabilities could be developed,benefiting from adjustable actuation combinations.Lying on the ground with all feet on the ground,a crawling soft robot with dexterous movement along multiple directions was realized.Moreover,the directional steering was instantaneous and efficient.With two feet standing on the ground,it also acted as a rolling soft robot that can achieve bidirectional rolling motion and climbing motion on a 2°slope.Finally,inspired by the orbicularis oris muscle in the mouth,a mouthlike soft robot that could bite and grab objects 5.3 times of its body weight was demonstrated.The bidirectional function of a single actuator and the various combination modes among multiple actuators together allow the soft robots to exhibit diverse functionalities and flexibility,which provides a very valuable reference for the design of highly controllable soft robots.展开更多
基金the City University of Hong Kong(Grant Nos.9610423,9667199,9667221,9680322)Research Grants Council of the Hong Kong Special Administrative Region(Grant Nos.21210820,11213721)+5 种基金Hong Kong Center for Cerebra-Cardiovascular Health Engineering,Tencent Robotics X(Grant No.9231409)Shenzhen Science and Technology Innovation Commission(Grant No.JCYJ20200109110201713)Science and Technology of Sichuan Province(Grant No.2020YFH0181)National Natural Science Foundation of China(Grant No.12072057)LiaoNing Revitalization Talents Program(Grant No.XLYC2007196)Fundamental Research Funds for the Central Universities(Grant No.DUT20RC⑶032).
文摘Skin-integrated electronics,also known as electronic skin(e-skin);are rapidly developing and are gradually being adopted in biomedical fields as well as in our daily lives.E-skin capable of providing sensitive and high-resolution tactile sensations and haptic feedback to the human body would open a new e-skin paradigm for closed-loop human-machine interfaces.Here,we report a class of materials and mechanical designs for the miniaturization of mechanical actuators and strategies for their integration into thin,soft e-skin for haptic interfaces.The mechanical actuators exhibit small dimensions of 5 mm diameter and 1.45 mm thickness and work in an electromagnetically driven vibrotactile mode with resonance frequency overlapping the most sensitive frequency of human skin.Nine mini actuators can be integrated simultaneously in a small area of 2 cm×2 cm to form a 3×3 haptic feedback array,which is small and compact enough to mount on a thumb tip.Furthermore,the thin,soft haptic interface exhibits good mechanical properties that work properly during stretching,bending,and twisting and therefore can conformally fit onto various parts of the human body to afford programmable tactile enhancement and Braille recognition with an accuracy rate over 85%.
基金supported by the National Science Foundation of China(U21A20492,Grant Nos.62171069,62275041,and 62122002)the National Key R&D Program of China(Grant No.2018YFB0407102)+5 种基金the Sichuan Science and Technology Program(Grant Nos.2022YFH0081,2022YFG0012,and 2022YFG0013)the Open Project of Sichuan Provincial Key Laboratory of display science and technology(ZYGX2022K018)the Program of Chongqing Science&Technology Commission(cstc2019jcyj-msxmX0877,cstc2019jscxfxydX0048,and cstc2019jcyjjqX0021)Cooperation projects between universities at Chongqing and institutes affiliated to the Chinese Academy of Sciences(HZ2021019)the Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJZD-K201901302,KJQN201901348,and KJCX2020048)the City University of Hong Kong(Grant Nos.9667221 and 9680322).
文摘Muscle groups perform their functions in the human body via bilateral muscle actuation,which brings bionic inspiration to artificial robot design.Building soft robotic systems with artificial muscles and multiple control dimensions could be an effective means to develop highly controllable soft robots.Here,we report a bilateral actuator with a bilateral deformation function similar to that of a muscle group that can be used for soft robots.To construct this bilateral actuator,a low-cost VHB 4910 dielectric elastomer was selected as the artificial muscle,and polymer films manufactured with specific shapes served as the actuator frame.By end-to-end connecting these bilateral actuators,a gear-shaped 3D soft robot with diverse motion capabilities could be developed,benefiting from adjustable actuation combinations.Lying on the ground with all feet on the ground,a crawling soft robot with dexterous movement along multiple directions was realized.Moreover,the directional steering was instantaneous and efficient.With two feet standing on the ground,it also acted as a rolling soft robot that can achieve bidirectional rolling motion and climbing motion on a 2°slope.Finally,inspired by the orbicularis oris muscle in the mouth,a mouthlike soft robot that could bite and grab objects 5.3 times of its body weight was demonstrated.The bidirectional function of a single actuator and the various combination modes among multiple actuators together allow the soft robots to exhibit diverse functionalities and flexibility,which provides a very valuable reference for the design of highly controllable soft robots.