The development of efficient metal-zeolite bifunctional catalysts for catalytic fast pyrolysis(CFP) of biomass waste is highly desirable for bioenergy and renewable biofuel production.However,conventional metal-loaded...The development of efficient metal-zeolite bifunctional catalysts for catalytic fast pyrolysis(CFP) of biomass waste is highly desirable for bioenergy and renewable biofuel production.However,conventional metal-loaded zeolites often suffer from metal sintering during pyrolysis and are thus inactivated.In this study,single-site Ga-functionalized hollow ZSM-5(GaO_x@HS-Z5) was synthesized via an impregnationdissolution-recrystallization strategy without H_(2) reduction.The Ga atom was coordinated to four oxygen atoms in HS-Z5 frameworks.Benefitting from the highly dispersed single-Ga atoms and hollow zeolite framework,3GaO_x@HS-Z5 performed the best in producing hydrocarbon-rich bio-oil compared to impregnated 3GaO_x/HS-Z5 and H_(2)-reduced 3Ga@HS-Z5 in the maize straw CFP.In particular,3GaO_x@HS-Z5 delivered the highest bio-oil yield(23.6 wt%) and hydrocarbon selectivity(49.4 area%).3GaO_x@HS-Z5 also retained its structural integrity and catalytic activity after five pyrolysis-regeneration cycles,demonstrating its advantage in practical biomass CFP.The elimination of H_(2) reduction during the synthesis of catalyst provides an additional advantage for simplifying the CFP process and reducing operating costs.The retained Ga micro-environment and anti-sintering properties were unique for 3GaO_x@HS-Z5,as severe metal sintering occurred during pyrolysis for other metals(e.g.,NiO_x,ZnO_x,FeO_x,and CoO_x) that encapsulated HS-Z5.展开更多
CaO-based sorbent is considered to be a promising candidate for capturing CO_2 at high temperature. However,the adsorption capacity of CaO decreases sharply with the increase of the carbonation/calcination cycles. In ...CaO-based sorbent is considered to be a promising candidate for capturing CO_2 at high temperature. However,the adsorption capacity of CaO decreases sharply with the increase of the carbonation/calcination cycles. In this study, CaO was derived from calcium acetate(CaAc_2), which was doped with different elements(Mg, Al,Ce, Zr and La) to improve the cyclic stability. The carbonation conversion and cyclic stability of sorbents were tested by thermogravimetric analyzer(TGA). The sorbents were characterized by N_2 isothermal adsorption measurements, scanning electron microscopy(SEM) and X-ray diffraction(XRD). The results showed that the cyclic stabilities of all modified sorbents were improved by doping elements, while the carbonation conversions of sorbents in the 1st cycle were not increased by doping different elements. After 22 cycles, the cyclic stabilities of CaO–Al, CaO–Ce and CaO–La were above 96.2%. After 110 cycles, the cyclic stability of CaO–Al was still as high as 87.1%. Furthermore, the carbonation conversion was closely related to the critical time and specific surface area.展开更多
In the present work,the effect of pre-calcination on carbonation conversion and cyclic stability of modi fied CaObased sorbent was investigated by thermogravimetric analyzer(TGA).The modi fied CaO-based sorbents with ...In the present work,the effect of pre-calcination on carbonation conversion and cyclic stability of modi fied CaObased sorbent was investigated by thermogravimetric analyzer(TGA).The modi fied CaO-based sorbents with CaAc_2 as precursor were respectively doped with different elements(Mg,Al,Ce,Zr and La).The speci fic surface area,pore volume and pore size distribution were tested by N_2 isothermal adsorption measurements.The phase compositions of sorbents were characterized by X-ray diffraction(XRD).The results showed that the cyclic stabilities of the sorbents were improved by pre-calcination.The pre-calcination was conducted at 900°C for 5 h in air by the muf fle furnace.With pre-calcination,the cyclic stabilities of sorbents could be as high as 96% after 22 cycles,such as CaO-Al,CaO-Ce and CaO-La.After contact with air,the carbonation conversions of spent sorbents with pre-calcination suddenly increased by about one-sixth due to the change of channel structure by hydration.Both the cyclic stability of sorbent and the durability of reactivation were related to the structural stability of sample,especially the stability of mesopores between 2 nm and 5.5 nm.The present work also provided an easy and low-cost method for reactivating the spent CaO-based sorbents.展开更多
The application of forced mercury oxidation technology would lead to an increase of Hg^(2+)concentration in the flue gas.Although Hg^(2+)can be easily removed in the WFGD,the mercury re-emission in the WFGD can decrea...The application of forced mercury oxidation technology would lead to an increase of Hg^(2+)concentration in the flue gas.Although Hg^(2+)can be easily removed in the WFGD,the mercury re-emission in the WFGD can decrease the total removal of mercury from coal-fired power plants.Hence,it is necessary to control Hg^(2+)concentration in the devices before the WFGD.Fly ash adsorbent is considered as a potential alternative for commercial activated carbon adsorbent.However,the adsorption efficiency of the original fly ash is low.Modification procedure is needed to enhance the adsorption performance.In this study,the adsorption of Hg^(2+)by brominated fly ash was studied.The fly ash was collected from the full-scale power plant utilizing bromide-blended coal combustion technology.The brominated fly ash exhibited excellent performance for Hg^(2+)removal.The flue gas component HBr and SO_(2)could improve adsorbent’s performance,while HCl would hinder its adsorption process.Also,it was demonstrated by Hg-TPD experiments that the adsorbed Hg^(2+)mainly existed on the fly ash surface in the form of HgBr_(2).In summary,the brominated fly ash has a broad application prospect for mercury control.展开更多
The high-speed simulation of large-scale offshore wind farms(OWFs) preserving the internal machine information has become a huge challenge due to the large wind turbine(WT) count and microsecond-range time step. Hence...The high-speed simulation of large-scale offshore wind farms(OWFs) preserving the internal machine information has become a huge challenge due to the large wind turbine(WT) count and microsecond-range time step. Hence, it is undoable to investigate the internal node information of the OWF in the electro-magnetic transient(EMT) programs. To fill this gap,this paper presents an equivalent modeling method for largescale OWF, whose accuracy and efficiency are guaranteed by integrating the individual devices of permanent magnet synchronous generator(PMSG) based WT. The node-elimination algorithm is used while the internal machine information is recursively updated. Unlike the existing aggregation methods, the developed EMT model can reflect the characteristics of each WT under different wind speeds and WT parameters without modifying the codes. The access to each WT controller is preserved so that the time-varying dynamics of all the WTs could be simulated. Comparisons of the proposed model with the detailed model in PSCAD/EMTDC have shown very high precision and high efficiency. The proposed modeling procedures can be used as reference for other types of WTs once the structures and parameters are given.展开更多
Due to the increasingly strict emission standards of NOx on various industries,many traditional flue gas treatment methods have been gradually improved.Except for selective catalytic reduction(SCR)and selective non-ca...Due to the increasingly strict emission standards of NOx on various industries,many traditional flue gas treatment methods have been gradually improved.Except for selective catalytic reduction(SCR)and selective non-catalytic reduction(SNCR)methods to remove NOx from flue gas,theoxidation method is paying more attention to NOx removal now because of the potential to simultaneously remove multiple pollutants from flue gas.This paper summarizes the efficiency,reaction conditions,effect factors,and reaction mechanism of NO oxidation from the aspects of liquid-phase oxidation,gas-phase oxidation,plasma technology,and catalytic oxidation.The effects of free radicals and active components of catalysts on NO oxidation and the combination of various oxidation methods are discussed in detail.The advantages and disadvantages of different oxidation methods are summarized,and the suggestions for future research on NO oxidation are put forward at the end.The review on the NO removal by oxidation methods can provide new ideas for future studies on the NO removal from flue gas.展开更多
基金supported by the National Natural Science Foundation of China (2217600921906005)+3 种基金the Beijing Natural Science Foundation (8222064)the Bingtuan Science and Technology Program (2023CB008-21)the CNPC Innovation Foundation (2022DQ02-0406)the financial support from Beihang University。
文摘The development of efficient metal-zeolite bifunctional catalysts for catalytic fast pyrolysis(CFP) of biomass waste is highly desirable for bioenergy and renewable biofuel production.However,conventional metal-loaded zeolites often suffer from metal sintering during pyrolysis and are thus inactivated.In this study,single-site Ga-functionalized hollow ZSM-5(GaO_x@HS-Z5) was synthesized via an impregnationdissolution-recrystallization strategy without H_(2) reduction.The Ga atom was coordinated to four oxygen atoms in HS-Z5 frameworks.Benefitting from the highly dispersed single-Ga atoms and hollow zeolite framework,3GaO_x@HS-Z5 performed the best in producing hydrocarbon-rich bio-oil compared to impregnated 3GaO_x/HS-Z5 and H_(2)-reduced 3Ga@HS-Z5 in the maize straw CFP.In particular,3GaO_x@HS-Z5 delivered the highest bio-oil yield(23.6 wt%) and hydrocarbon selectivity(49.4 area%).3GaO_x@HS-Z5 also retained its structural integrity and catalytic activity after five pyrolysis-regeneration cycles,demonstrating its advantage in practical biomass CFP.The elimination of H_(2) reduction during the synthesis of catalyst provides an additional advantage for simplifying the CFP process and reducing operating costs.The retained Ga micro-environment and anti-sintering properties were unique for 3GaO_x@HS-Z5,as severe metal sintering occurred during pyrolysis for other metals(e.g.,NiO_x,ZnO_x,FeO_x,and CoO_x) that encapsulated HS-Z5.
基金Supported by Capture CO_2 and Storage Technology Jointly Studied by USA and China(2013DFB60140-04)Northwest University Graduate Innovative Talent Training Project(YZZ12036)
文摘CaO-based sorbent is considered to be a promising candidate for capturing CO_2 at high temperature. However,the adsorption capacity of CaO decreases sharply with the increase of the carbonation/calcination cycles. In this study, CaO was derived from calcium acetate(CaAc_2), which was doped with different elements(Mg, Al,Ce, Zr and La) to improve the cyclic stability. The carbonation conversion and cyclic stability of sorbents were tested by thermogravimetric analyzer(TGA). The sorbents were characterized by N_2 isothermal adsorption measurements, scanning electron microscopy(SEM) and X-ray diffraction(XRD). The results showed that the cyclic stabilities of all modified sorbents were improved by doping elements, while the carbonation conversions of sorbents in the 1st cycle were not increased by doping different elements. After 22 cycles, the cyclic stabilities of CaO–Al, CaO–Ce and CaO–La were above 96.2%. After 110 cycles, the cyclic stability of CaO–Al was still as high as 87.1%. Furthermore, the carbonation conversion was closely related to the critical time and specific surface area.
基金Supported by Capture CO2 and Storage Technology Jointly Studied by USA and China(2013DFB60140-04)Key Program of National Natural Science Foundation of China(No.21536009)
文摘In the present work,the effect of pre-calcination on carbonation conversion and cyclic stability of modi fied CaObased sorbent was investigated by thermogravimetric analyzer(TGA).The modi fied CaO-based sorbents with CaAc_2 as precursor were respectively doped with different elements(Mg,Al,Ce,Zr and La).The speci fic surface area,pore volume and pore size distribution were tested by N_2 isothermal adsorption measurements.The phase compositions of sorbents were characterized by X-ray diffraction(XRD).The results showed that the cyclic stabilities of the sorbents were improved by pre-calcination.The pre-calcination was conducted at 900°C for 5 h in air by the muf fle furnace.With pre-calcination,the cyclic stabilities of sorbents could be as high as 96% after 22 cycles,such as CaO-Al,CaO-Ce and CaO-La.After contact with air,the carbonation conversions of spent sorbents with pre-calcination suddenly increased by about one-sixth due to the change of channel structure by hydration.Both the cyclic stability of sorbent and the durability of reactivation were related to the structural stability of sample,especially the stability of mesopores between 2 nm and 5.5 nm.The present work also provided an easy and low-cost method for reactivating the spent CaO-based sorbents.
基金financially supported by the National Key Research and Development Program of China(Grant No.2016YFB0600603)National Natural Science Foundation of China(Grant No.51776084)Shenzhen Science and Technology Innovation Committee(Grant No.JCYJ20190809095003718).
文摘The application of forced mercury oxidation technology would lead to an increase of Hg^(2+)concentration in the flue gas.Although Hg^(2+)can be easily removed in the WFGD,the mercury re-emission in the WFGD can decrease the total removal of mercury from coal-fired power plants.Hence,it is necessary to control Hg^(2+)concentration in the devices before the WFGD.Fly ash adsorbent is considered as a potential alternative for commercial activated carbon adsorbent.However,the adsorption efficiency of the original fly ash is low.Modification procedure is needed to enhance the adsorption performance.In this study,the adsorption of Hg^(2+)by brominated fly ash was studied.The fly ash was collected from the full-scale power plant utilizing bromide-blended coal combustion technology.The brominated fly ash exhibited excellent performance for Hg^(2+)removal.The flue gas component HBr and SO_(2)could improve adsorbent’s performance,while HCl would hinder its adsorption process.Also,it was demonstrated by Hg-TPD experiments that the adsorbed Hg^(2+)mainly existed on the fly ash surface in the form of HgBr_(2).In summary,the brominated fly ash has a broad application prospect for mercury control.
基金supported by the National Natural Science Foundation of China (No. 52277094)Science and Technology Project of China Huaneng Group Co.,Ltd.(No. HNKJ20-H88)。
文摘The high-speed simulation of large-scale offshore wind farms(OWFs) preserving the internal machine information has become a huge challenge due to the large wind turbine(WT) count and microsecond-range time step. Hence, it is undoable to investigate the internal node information of the OWF in the electro-magnetic transient(EMT) programs. To fill this gap,this paper presents an equivalent modeling method for largescale OWF, whose accuracy and efficiency are guaranteed by integrating the individual devices of permanent magnet synchronous generator(PMSG) based WT. The node-elimination algorithm is used while the internal machine information is recursively updated. Unlike the existing aggregation methods, the developed EMT model can reflect the characteristics of each WT under different wind speeds and WT parameters without modifying the codes. The access to each WT controller is preserved so that the time-varying dynamics of all the WTs could be simulated. Comparisons of the proposed model with the detailed model in PSCAD/EMTDC have shown very high precision and high efficiency. The proposed modeling procedures can be used as reference for other types of WTs once the structures and parameters are given.
基金supported by National Key Research and Development Program of China(No.2018YFB0605101)the Key Project Natural Science Foundation of Tianjin(No.18JCZDJC39800)+4 种基金the Key R&D projects in Hebei Province(No.20373701D)the National Natural Science Foundation of China(No.51808181)the Science and Technology Key Project of Tianjin(Nos.18ZXSZSF00040,18KPXMSF00080,18PTZWHZ00010)Department of Education of Hebei Province(No.BJ2017032)Joint Doctoral Training Foundation of HEBUT(No.2017HW0002)。
文摘Due to the increasingly strict emission standards of NOx on various industries,many traditional flue gas treatment methods have been gradually improved.Except for selective catalytic reduction(SCR)and selective non-catalytic reduction(SNCR)methods to remove NOx from flue gas,theoxidation method is paying more attention to NOx removal now because of the potential to simultaneously remove multiple pollutants from flue gas.This paper summarizes the efficiency,reaction conditions,effect factors,and reaction mechanism of NO oxidation from the aspects of liquid-phase oxidation,gas-phase oxidation,plasma technology,and catalytic oxidation.The effects of free radicals and active components of catalysts on NO oxidation and the combination of various oxidation methods are discussed in detail.The advantages and disadvantages of different oxidation methods are summarized,and the suggestions for future research on NO oxidation are put forward at the end.The review on the NO removal by oxidation methods can provide new ideas for future studies on the NO removal from flue gas.