Active control of terahertz(THz)waves is attracting tremendous attentions in terahertz communications and active photonic devices.Perovskite,due to its excellent photoelectric conversion performance and simple manufac...Active control of terahertz(THz)waves is attracting tremendous attentions in terahertz communications and active photonic devices.Perovskite,due to its excellent photoelectric conversion performance and simple manufacturing process,has emerged as a promising candidate for optoelectronic applications.However,the exploration of perovskites in optically controlled THz modulators is still limited.In this work,the photoelectric properties and carrier dynamics of FA_(0.4)MA_(0.6)PbI_(3)perovskite films were investigated by optical pumped terahertz probe(OPTP)system.The ultrafast carrier dynamics reveal that FA_(0.4)MA_(0.6)PbI_(3)thin film exhibits rapid switching and relaxation time within picosecond level,suggesting that FA_(0.4)MA_(0.6)PbI_(3)is an ideal candidate for active THz devices with ultrafast response.Furthermore,as a proof of concept,a FA_(0.4)MA_(0.6)PbI_(3)-based metadevice with integrating plasma-induced transparency(PIT)effect was fabricated to achieve ultrafast modulation of THz wave.The experimental results demonstrated that the switching time of FA_(0.4)MA_(0.6)PbI_(3)-based THz modulator is near to 3.5 ps,and the threshold of optical pump is as low as 12.7μJ cm^(-2).The simulation results attribute the mechanism of ultrafast THz modulation to photo-induced free carriers in the FA_(0.4)MA_(0.6)PbI_(3)layer,which progressively shorten the capacitive gap of PIT resonator.This study not only illuminates the potential of FA_(0.4)MA_(0.6)PbI_(3)in THz modulation,but also contributes to the field of ultrafast photonic devices.展开更多
With the increasingly fierce market competition,manufacturing enterprises have to continuously improve their competitiveness through their collaboration and labor division with each other,i.e.forming manufacturing ent...With the increasingly fierce market competition,manufacturing enterprises have to continuously improve their competitiveness through their collaboration and labor division with each other,i.e.forming manufacturing enterprise collaborative network(MECN)through their collaboration and labor division is an effective guarantee for obtaining competitive advantages.To explore the topology and evolutionary process of MECN,in this paper we investigate an empirical MECN from the viewpoint of complex network theory,and construct an evolutionary model to reproduce the topological properties found in the empirical network.Firstly,large-size empirical data related to the automotive industry are collected to construct an MECN.Topological analysis indicates that the MECN is not a scale-free network,but a small-world network with disassortativity.Small-world property indicates that the enterprises can respond quickly to the market,but disassortativity shows the risk spreading is fast and the coordinated operation is difficult.Then,an evolutionary model based on fitness preferential attachment and entropy-TOPSIS is proposed to capture the features of MECN.Besides,the evolutionary model is compared with a degree-based model in which only node degree is taken into consideration.The simulation results show the proposed evolutionary model can reproduce a number of critical topological properties of empirical MECN,while the degree-based model does not,which validates the effectiveness of the proposed evolutionary model.展开更多
Distributed optical fiber sensing exploring forward stimulated Brillouin scattering(FSBS)has received wide attention,as it indicates a new sensing method to measure the liquid property surrounding an optical fiber.In ...Distributed optical fiber sensing exploring forward stimulated Brillouin scattering(FSBS)has received wide attention,as it indicates a new sensing method to measure the liquid property surrounding an optical fiber.In the existing techniques,backward stimulated Brillouin scattering is adopted for detection of the sensing signal,which requires time-consuming signal acquisition and post-processing.In this work,an approach that distributedly measures FSBS spectra is proposed and demonstrated based on coherent detection.While an excitation pulse with single-frequency amplitude modulation is used to induce a guided acoustic mode in the fiber,a following pulse is adopted to probe the induced phase modulation.Using a chirped fiber Bragg grating array,an enhancedbackward-propagating sensing signal is generated from the probe pulse.Heterodyne coherent-detection-based phase demodulation is then realized by mixing the sensing signal with a local oscillator.The FSBS spectra can then be reconstructed from the beat signals with only one round of frequency sweeping.With significantly accelerated signal acquisition and simplified post-processing,the proposed distributed acoustic sensing system has achieved spatial resolution of 5 m over a 500-m sensing range.展开更多
基金supported by the National Natural Science Foundation of China(U1930117,12204445)。
文摘Active control of terahertz(THz)waves is attracting tremendous attentions in terahertz communications and active photonic devices.Perovskite,due to its excellent photoelectric conversion performance and simple manufacturing process,has emerged as a promising candidate for optoelectronic applications.However,the exploration of perovskites in optically controlled THz modulators is still limited.In this work,the photoelectric properties and carrier dynamics of FA_(0.4)MA_(0.6)PbI_(3)perovskite films were investigated by optical pumped terahertz probe(OPTP)system.The ultrafast carrier dynamics reveal that FA_(0.4)MA_(0.6)PbI_(3)thin film exhibits rapid switching and relaxation time within picosecond level,suggesting that FA_(0.4)MA_(0.6)PbI_(3)is an ideal candidate for active THz devices with ultrafast response.Furthermore,as a proof of concept,a FA_(0.4)MA_(0.6)PbI_(3)-based metadevice with integrating plasma-induced transparency(PIT)effect was fabricated to achieve ultrafast modulation of THz wave.The experimental results demonstrated that the switching time of FA_(0.4)MA_(0.6)PbI_(3)-based THz modulator is near to 3.5 ps,and the threshold of optical pump is as low as 12.7μJ cm^(-2).The simulation results attribute the mechanism of ultrafast THz modulation to photo-induced free carriers in the FA_(0.4)MA_(0.6)PbI_(3)layer,which progressively shorten the capacitive gap of PIT resonator.This study not only illuminates the potential of FA_(0.4)MA_(0.6)PbI_(3)in THz modulation,but also contributes to the field of ultrafast photonic devices.
基金the National Natural Science Foundation of China(Grant Nos.51475347 and 51875429).
文摘With the increasingly fierce market competition,manufacturing enterprises have to continuously improve their competitiveness through their collaboration and labor division with each other,i.e.forming manufacturing enterprise collaborative network(MECN)through their collaboration and labor division is an effective guarantee for obtaining competitive advantages.To explore the topology and evolutionary process of MECN,in this paper we investigate an empirical MECN from the viewpoint of complex network theory,and construct an evolutionary model to reproduce the topological properties found in the empirical network.Firstly,large-size empirical data related to the automotive industry are collected to construct an MECN.Topological analysis indicates that the MECN is not a scale-free network,but a small-world network with disassortativity.Small-world property indicates that the enterprises can respond quickly to the market,but disassortativity shows the risk spreading is fast and the coordinated operation is difficult.Then,an evolutionary model based on fitness preferential attachment and entropy-TOPSIS is proposed to capture the features of MECN.Besides,the evolutionary model is compared with a degree-based model in which only node degree is taken into consideration.The simulation results show the proposed evolutionary model can reproduce a number of critical topological properties of empirical MECN,while the degree-based model does not,which validates the effectiveness of the proposed evolutionary model.
基金National Natural Science Foundation of China(62075171,61905184,61735013)。
文摘Distributed optical fiber sensing exploring forward stimulated Brillouin scattering(FSBS)has received wide attention,as it indicates a new sensing method to measure the liquid property surrounding an optical fiber.In the existing techniques,backward stimulated Brillouin scattering is adopted for detection of the sensing signal,which requires time-consuming signal acquisition and post-processing.In this work,an approach that distributedly measures FSBS spectra is proposed and demonstrated based on coherent detection.While an excitation pulse with single-frequency amplitude modulation is used to induce a guided acoustic mode in the fiber,a following pulse is adopted to probe the induced phase modulation.Using a chirped fiber Bragg grating array,an enhancedbackward-propagating sensing signal is generated from the probe pulse.Heterodyne coherent-detection-based phase demodulation is then realized by mixing the sensing signal with a local oscillator.The FSBS spectra can then be reconstructed from the beat signals with only one round of frequency sweeping.With significantly accelerated signal acquisition and simplified post-processing,the proposed distributed acoustic sensing system has achieved spatial resolution of 5 m over a 500-m sensing range.