The influence of roasting on the leaching rate and valence of vanadium was evaluated during vanadium extraction from stone coal. Vanadium in stone coal is hard to be leached and the leaching rate is less than 10% when...The influence of roasting on the leaching rate and valence of vanadium was evaluated during vanadium extraction from stone coal. Vanadium in stone coal is hard to be leached and the leaching rate is less than 10% when the raw ore is leached by 4 moUL H2SO4 at 90℃ for 2 h. After the sample is roasted at 900℃ for 2 h, the leaching rate of vanadium reaches the maximum, and more than 70% of vanadium can be leached. The crystal of vanadium-bearing mica minerals decomposes and the Content of V(V) increases with the rise of roasting temperature from 600 to 900℃, therefore the leaching rate of vanadium increases significantly with the decomposition of the mica minerals. Some new phases, anorthite for example, form when the roasting temperature reaches 1000℃. A part of vanadium may be enwrapped in the sintered materials and newly formed phases, which may impede the oxidation of low valent vanadium and make the leaching rate of vanadium drop dramatically. The leaching rate of vanadium is not only determined by the valence state of vanadium but also controlled by the decomposition of vanadium-bearing minerals and the existence state of vanadium to a large extent.展开更多
The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in mon...The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in montmorillonite aerogels(3D-Mt)through vacuum impregnation to prepare 3D-Mt/PEG composite PCMs.When used as a support matrix,3D-Mt can effectively prevent PEG leakage and act as a flame-retardant barrier to reduce the flammability of PEG.Simultaneously,3D-Mt/PEG demonstrates outstanding shape retention,increased thermal energy storage density,and commendable thermal and chemical stability.The phase transition enthalpy of 3D-Mt/PEG can reach 167.53 J/g and remains stable even after 50 heating-cooling cycles.Furthermore,the vertical sheet-like structure of 3D-Mt establishes directional heat transport channels,facilitating efficient phonon transfer.This configuration results in highly anisotropic thermal conductivities that ensure swift thermal responses and efficient heat conduction.This study addresses the shortcomings of PCMs,including the issues of leakage and inadequate flame retardancy.It achieves the development and design of 3D-Mt/PEG with ultrahigh strength,superior flame retardancy,and directional heat transfer.Therefore,this work offers a design strategy for the preparation of high-performance composite PCMs.The 3D-Mt/PEG with vertically aligned and well-ordered array structure developed in this research shows great potential for thermal management and photothermal conversion applications.展开更多
Approximately 2.0-3.0 t of copper slag(CS) containing 35%-45% iron is generated for every ton of copper produced during the pyrometallurgical process from copper concentrate. Therefore, the recovery of iron from CS ut...Approximately 2.0-3.0 t of copper slag(CS) containing 35%-45% iron is generated for every ton of copper produced during the pyrometallurgical process from copper concentrate. Therefore, the recovery of iron from CS utilizes a valuable metal and alleviates the environmental stress caused by stockpile. In this paper, a new method has been developed to realize the enrichment of iron in CS through the selective removal of silica. The thermodynamic analyses and experimental results show that the iron in CS can be fully reduced into metallic iron by carbothermic reduction at 1473 K for 60 min. The silica was converted into free quartz solid solution(QSS) and cristobalite solid solution(CSS). QSS and CSS are readily soluble, whereas metallic iron is insoluble, in NaOH solution. Under optimal leaching conditions, a residue containing 87.32% iron is obtained by decreasing the silica content to 6.02% in the reduction roasted product. The zinc content in the residue is less than 0.05%. This study lays the foundation for the development of a new method to comprehensively extract silicon and iron in CS while avoiding the generation of secondary tailing.展开更多
Seedling period is an important stage of plant growth. This research was mainly to analysis the influence of chitosan on wheat seedling growth and physiological mechanisms under drought stress. The results showed that...Seedling period is an important stage of plant growth. This research was mainly to analysis the influence of chitosan on wheat seedling growth and physiological mechanisms under drought stress. The results showed that the group coated with chitosan significantly improved the growth index such as germination rate, wet weight, root length, root active, and impacted physiological indices such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT)), the content of malwondialdehyde (MDA) and chlorophyll compared with CK under drought stress. Activities of POD, CAT and SOD increased and then decreased, the content of MDA increased under drought stress. But. variation rates of the group coated with chitosan were slower than that of CK, which indicates that chitosan can significantly improve anti-oxidant enzymes activity to clear timely active oxygen and reduce the content of MDA so as to alleviate the degree of damage in the drought stress and make seedlings grow better. The results also showed that chitosan improved chloro-phyll content than that of CK, which demonstrated that chlorophyll content significantly influenced the photosynthetic efficiency of the mutant and added wheat above ground biomass and the field experiment results showed that chitosan increased yield 13.6% than that of CK.展开更多
Limestone(CaCO3),which could promote sulfur fixation,was added to coal gangue during roasting in a circulating fluidized bed(CFB)boiler.CaO and CaSO_(4) were the main Ca-bearing minerals while metakaolinite was the ma...Limestone(CaCO3),which could promote sulfur fixation,was added to coal gangue during roasting in a circulating fluidized bed(CFB)boiler.CaO and CaSO_(4) were the main Ca-bearing minerals while metakaolinite was the major Al-bearing mineral in CFB slag.The effect of CaSO_(4) and CaO on the separation of alumina and silica from metakaolinite by reduction roasting−alkaline leaching process was studied.Results showed that metakaolinite was completely converted into hercynite and silica solid solutions(i.e.,quartz and cristobalite solid solutions)by reduction roasting with hematite.More than 95%of silica in the reduced specimen was removed by alkaline leaching.The addition of CaSO_(4) and CaO remarkably decreased the separation efficiency of alumina and silica in metakaolinite,which could be attributed to the formation of Si-bearing minerals:(1)Fayalite and anorthite were formed during the reduction roasting process;(2)Fayalite was stable while anorthite was converted into sodalite and wollastonite during the alkaline leaching process.This study demonstrates that sulfur in coal gangue should be fixed by treating the exhaust gas instead of controlling the combustion process of CFB to achieve the comprehensive recovery of silica and alumina from the CFB slag.展开更多
The aim of this investigation was to prepare geopolymeric precursor from vanadium tailing(VT)by thermal activation and modification.For activation,a homogeneous blend of VT and sodium hydroxide was calcinated at an el...The aim of this investigation was to prepare geopolymeric precursor from vanadium tailing(VT)by thermal activation and modification.For activation,a homogeneous blend of VT and sodium hydroxide was calcinated at an elevated temperature and then modified with metakaolin to produce a geopolymeric precursor.During the thermal activation,the VT was corroded by sodium hydroxide and then sodium silicate formed on the particle surfaces.After water was added,the sodium silicate coating dissolved to release silicon species,which created an alkaline solution environment.The metakaolin then dissolved in the alkaline environment to generate aluminum species,which was followed by geopolymerization.The VT particles were connected by a gel produced during geopolymerization,which yielded a geopolymer with excellent mechanical performance.This investigation not only improves the feasibility of using geopolymer technology for large-scale and in-situ applications,but also promotes the utilization of VT and other silica-rich solid wastes.展开更多
Adhesion is an important process of particle-bubble interaction in fine particle(-10μm)flotation.This paper studied the adhesion process and mechanism between nanobubbles and fine cassiterite particles by using a hig...Adhesion is an important process of particle-bubble interaction in fine particle(-10μm)flotation.This paper studied the adhesion process and mechanism between nanobubbles and fine cassiterite particles by using a high-speed camera,atomic force microscope(AFM),adsorption capacity tests,and induction time tests.After being pretreated with nanobubbles(NBs)water,fine cassiterite particles flotation tests were carried out using caprylhydroxamic acid(CHA)as a collector.The results showed that NBs can improve the recovery and flotation rate of fine cassiterite while decreasing the collector dosage.The adsorption capacity test indicated that the cassiterite treated with NBs had lower demand for collector concentration.The AFM imaging results further demonstrate that NBs could reduce the adsorption of CHA on the surface of minerals.Since NBs played a part of the role of collector,it can improve the flotation effect while reducing the amount of collector.The induction time test and the high-speed camera observation test showed that NBs promoted the attachment between bubbles and cassiterite particles.On the other hand,NBs agglomerate cassiterite particles,increasing the probability of particles colliding with bubbles.展开更多
Dry afromontane forests are among the most poorly managed and endangered ecosystems.Therefore,we assessed the composition,diversity,and conservation status of woody plant species of the Debre Libanos church forests an...Dry afromontane forests are among the most poorly managed and endangered ecosystems.Therefore,we assessed the composition,diversity,and conservation status of woody plant species of the Debre Libanos church forests and surrounding forest lands in Oromiya Regional National State,central Ethiopia in 62 nested circular sample plots spaced 200 m apart along two transect lines.Large circular plots 314 m^(2)were used to sample trees with DBH of at least 10 cm,and subplots of 28.26 m^(2)were laid in each main plot were used to assess saplings and shrubs;a small subplot of 3.14 m2 was used to assess seedlings.In total,70 woody plant species belonging to 62 genera and 43 families were recorded.Of these,59,28 and 32 were in the church,government and private forest types,respectively.The most dominant families were Fabaceae and Verbenaceae,each represented by five species.In the forests considered,trees accounted for 61%,and shrubs with diameter at breast height(DBH)of 1-10 cm accounted for ca.33%.Among growth forms of woody species,shrubs and seedlings,followed by trees constituted much of the density of woody species in all the three ownership types of forests.The church forest had the most species(59)and highest Shannon(3.12)and Simpson(0.92)species diversity indices,and the government and private forests had a nearly similar total number of species and Shannon and Simpson species diversity indices.Most of the species with higher importance value indices(IVI)were indigenous in origin within the church forest(Juniperus procera=82),government forest(J.procera=66)and private forest(Acacia abyssinica=84).The composition,diversity,and population structure of woody species in the church forest were significantly higher than in the other forest lands.However,interventions of the government and private sectors to conserve forest systems in the areas,particularly the government-owned forest and specific species such as Olea europaea need active enrichment plantings due to their limited natural regeneration.Without improved management interventions,livelihood income diversification and ecosystem services obtained from the forest will not be sustainable.展开更多
Dense pre-hydrated geosynthetic clay liners(DPH GCLs)were manufactured as innovative materials accompanied by the advantage of lower hydraulic conductivity(k).The k of DPH GCLs permeated with de-ionized water(DIW)was ...Dense pre-hydrated geosynthetic clay liners(DPH GCLs)were manufactured as innovative materials accompanied by the advantage of lower hydraulic conductivity(k).The k of DPH GCLs permeated with de-ionized water(DIW)was 9.8×10^(−12) m/s.The effect of Cu^(2+)synthetic solution on DPH GCLs was discussed.Furthermore,the effect mechanism was studied on the basis of test technologies.A significant adverse impact on hydraulic performance of DPH GCLs is found when the concentration of Cu^(2+)is greater than 1 g/L.SEM,XRD,XRF,FTIR,and XPS analyses show that the effect of Cu^(2+)on DPH GCLs includes two steps.Firstly,Cu^(2+)interacts with hydrophobic organic matter(HOM),and the adhesion of bentonite is destroyed,and some holes appear.The Cu^(2+)contacts with bentonite directly,and Cu^(2+)interacts with bentonite through ion exchange.Passivated phenomenon occurs on the surface of the bentonite,and swelling ability of bentonite is reduced,which causes permeable DPH GCLs.展开更多
The effect and mechanism of ultrasound and CaF_(2) on vanadium leaching from vanadium-bearing shale were investigated systematically.In consideration of the enhancement for vanadium recovery,the combination of ultraso...The effect and mechanism of ultrasound and CaF_(2) on vanadium leaching from vanadium-bearing shale were investigated systematically.In consideration of the enhancement for vanadium recovery,the combination of ultrasound and CaF_(2)(66.28%) exerts more evident effects than ultrasound(26.97%) and CaF_(2)(60.35%) alone,demonstrating the synergetic effect of ultrasound and CaF_(2).Kinetic analysis manifests that the product layer diffusion controls vanadium leaching in ultrasound system without CaF_(2),however product layer diffusion and interfacial reaction is the rate-controlling step for vanadium leaching in other three leaching systems.The combination of ultrasound and CaF_(2) notably decreases the activation energy(E_(a)) from 62.03 to 27.61 kJ/mol,nevertheless individual CaF_(2) only reduces the E_(a) to 50.70 kj/mol.X-ray diffraction and fourier transform infrared spectrometer analyses show that the decomposition degree of the vanadium-bearing mica structure is the most significant in ultrasound and CaF_(2) system,proving the highest release degree of vanadium.Specific surface area and pore distribution combined with scanning electron microscope analyses reveal that the action of ultrasound and CaF_(2) would provide higher specific surface area,more abundant pores structure and cracks for the particles,which further prompts the rapid diffusion of H^(+),F^(-)and HF,and achieves the conspicuous improvement of vanadium leaching recovery.展开更多
Constructing Z-scheme heterojunction to improve the separation efficiency of photogenerated carriers of photocatalysts has gained extensive attention.In this work,we fabricated a novel Z-scheme MoO3/Bi2O4 heterojuncti...Constructing Z-scheme heterojunction to improve the separation efficiency of photogenerated carriers of photocatalysts has gained extensive attention.In this work,we fabricated a novel Z-scheme MoO3/Bi2O4 heterojunction photocatalyst by a hydrothermal method.XPS analysis results indicated that strong interaction between MoO3 and Bi2O4 is generated,which contributes to charge transfer and separation of the photogenerated carriers.This was confirmed by photoluminescence(PL)and electrochemical impedance spectroscopy(EIS)tests.The photocatalytic performance of the as-synthesized photocatalysts was evaluated by degrading rhodamine B(RhB)in aqueous solution under visible light irradiation,showing that 15%MoO3/Bi2O4(15-MB)composite exhibited the highest photocatalytic activity,which is 2 times higher than that of Bi2O4.Besides,the heterojunction photocatalyst can keep good photocatalytic activity and stability after five recycles.Trapping experiments demonstrated that the dominant active radicals in photocatalytic reactions are superoxide radical( O2-)and holes(h+),indicating that the 15-MB composite is a Z-scheme photocatalyst.Finally,the mechanism of the Z-scheme MoO3/Bi2O4 composite for photo-degrading RhB in aqueous solution is proposed.This work provides a promising strategy for designing Bi-based Z-scheme heterojunction photocatalysts for highly efficient removal of environmental pollutants.展开更多
The use of organophosphorus inhibitor is diminishing because of its toxic effects on aquatic and other life. In this study, a composite eco-friendly phosphate-free corrosion and scale inhibitor HS has been developed u...The use of organophosphorus inhibitor is diminishing because of its toxic effects on aquatic and other life. In this study, a composite eco-friendly phosphate-free corrosion and scale inhibitor HS has been developed using hydrolyzed polymaleic anhydride (HPMA), sodium gluconate, Zn2+ synergist and sulfamic acid. And the formula ratio of each component is 9:5:4:2. The performance of the corrosion and scale inhibitor was evaluated by weight loss experiment and the static scale inhibition test, respectively. The results indicated that HS had positive corrosion and scale inhibition effect at a dosage of 40 mg.L–1 or higher. Potentiodynamic polarization curves indicated that HS inhibits the corrosion of steel based on controlling the anodic reaction. And the surface morphology of the carbon steel was studied by scan-ning electronic microscope (SEM). The inhibition effects were due to the formation of protective films.展开更多
Volumetric solar evaporations by using light-absorbing nanoparticles suspended in liquids(nanofluids)as solar absorbers have been widely regarded as one of the promising solutions for clean water production because of...Volumetric solar evaporations by using light-absorbing nanoparticles suspended in liquids(nanofluids)as solar absorbers have been widely regarded as one of the promising solutions for clean water production because of its high efficiency and low capital cost compared to traditional solar distillation systems.Nevertheless,previous solar evaporation systems usually required highly concentrated solar irradiation and high capital cost,limiting the practical application on a large scale.Herein,for the first time in this work,polydopamine(PDA)-capped nano Fe_(3)O_(4)(Fe_(3)O_(4)@PDA)nanofluids were used as solar absorbers in a volumetric system for solar evaporation.The introduction of organic PDA to nano Fe_(3)O_(4)highly contributed to the high light-absorbing capacity of over 85%in wide ranges of 200–2400 nm because of the existence of numerous carbon bonds and pi(π)bonds in PDA.As a result,high evaporation efficiency of 69.93%under low irradiation of 1.0 kW m^(-2)was achieved.Compared to other nanofluids,Fe_(3)O_(4)@PDA nanofluids also provided an advantage in high unit evaporation rates.Moreover,Fe_(3)O_(4)@PDA nanofluids showed excellent reusability and recyclability owing to the preassembled nano Fe_(3)O_(4),which significantly reduced the material consumptions.These results demonstrated that the Fe_(3)O_(4)@PDA nanofluids held great promising application in highly efficient solar evaporation.展开更多
Policymakers and international organizations are making the conscious effort to address climate change through afforestation and sustainable ecosystem management. Economic activities including agriculture, mining, and...Policymakers and international organizations are making the conscious effort to address climate change through afforestation and sustainable ecosystem management. Economic activities including agriculture, mining, and infra-structure improvement to meet basic human needs continuously degrade the natural and forest resources. The rate of deforestation in Ghana is alarming due to over-reliance on forest resources by forest-dependent communities. Perceived causes of deforestation differ from individuals and groups perspec-tive. This depends on factors including environmental knowledge, education level, market demand and socio-economic activities. Simple random sampling and key informant interview with the aid of semi-structured questionnaire was used to elicit information from the indigenes of Sissala West District to determine their perceptions of causes of deforestation. The study indicated that poverty, high illiteracy, population growth and lack of alternative source of livelihood were the indirect causes which trigger livelihood economic activities such as farming, charcoal burning, wood logging and hunting leading to degradation of the ecosystem. It was also realized that majority of the indigenes are uneducated and this contributes to their unawareness of rate of de-forestation. Recommendations suggested to address challenges were enforce-ment of bye-laws and stringent government environmental policies to deter people from degrading the forest. Education, agroforestry, afforestation, and provision of alternative livelihood were also good interventions suggested.展开更多
The high calcium type stone coal from Hubei province was leached by water and dilute acid separately after being roasted with different dosage of Na Cl. The water leaching rate of vanadium(WLRV) was low and only 26....The high calcium type stone coal from Hubei province was leached by water and dilute acid separately after being roasted with different dosage of Na Cl. The water leaching rate of vanadium(WLRV) was low and only 26.8% of vanadium can be leached by water when 4% Na Cl was added, but the acid leaching rate of vanadium(ALRV) was relatively high. Calcium in the high calcium type stone coal is greatly superfl uous relative to vanadium, hence, the calcium reacts with vanadium to form Ca(VO3)2, Ca2V2O7 and Ca3(VO4)2orderly during the stone coal roasting process and high temperature is beneficial to the reactions between calcium and vanadium, which was validated by simulated reactions between pure calcium carbonate and vanadium pentoxide. These calcium vanadates are all water insoluble but acid soluble and this causes the low WLRV and relatively high ALRV. After calcium removal by HCl, the WLRV is highly enhanced and reaches about 50% when only 2% Na Cl was added. If the HCl content is too high, the stone coal is easily sintered and the formed glass structure can enwrap vanadium, which leads the WLRV to decline. Single water leaching process is not appropriate to extract vanadium from high calcium type stone coal.展开更多
As secondary mineral resources, diatomite tailings(DT) got from the Linjiang region of China were prepared and characterized by SEM, XRF and XRD. Mono-factor experiments were carried out to investigate the effects o...As secondary mineral resources, diatomite tailings(DT) got from the Linjiang region of China were prepared and characterized by SEM, XRF and XRD. Mono-factor experiments were carried out to investigate the effects of the operation factor, including contact time, adsorbent concentration, initial p H value of the dye solutions, adsorption temperature and initial concentration of cationic Red X-GRL(X-GRL) on the adsorption of X-GRL. The adsorption kinetics, isotherms, thermodynamics and mechanisms for X-GRL were also studied. It was efficient for DT to adsorb X-GRL from aqueous solutions, and it was even discovered to have higher adsorptivity for X-GRL than diatomite concentrate(DC) in our previous test. The adsorption processes fit very well with the pseudo-second-order model and the Langmuir isotherm equation. In addition, various thermodynamic parameters, such as standard Gibbs free energy(ΔG°), standard enthalpy(ΔH°) and standard entropy(ΔS°) have been calculated. From thermodynamic studies, it was seen that the adsorption was spontaneous and endothermic. The main driving forces of the physical adsorption on DT are electrostatic attraction. The reason why DT showed higher adsorptivity for X-GRL than DC was that there were more clay mineral particles within, which has a remarkable ability of dye adsorption due to its high surface area. DT as a cheap absorbent for X-GRL removal would replace or partially replace the activated carbon.展开更多
Composite electrodes prepared by cation exchange resins and activated carbon(AC)were used to adsorb Ⅴ(Ⅳ)in capacitive deionization(CDI).The electrode made of middle resin size(D860/AC M)had the largest specific surf...Composite electrodes prepared by cation exchange resins and activated carbon(AC)were used to adsorb Ⅴ(Ⅳ)in capacitive deionization(CDI).The electrode made of middle resin size(D860/AC M)had the largest specific surface area and mesoporous content than two other composite electrodes.Electrochemical analysis showed that D860/AC M presents higher specific capacitance and electrical double layer capacitor than the others,and significantly lower internal diffusion impedance.Thus,D860/AC M exhibits the highest adsorption capacity and rate of Ⅴ(Ⅳ)among three electrodes.The intra-particle diffusion model fits well in the initial adsorption stage,while the liquid film diffusion model is more suitable for fitting at the later stage.The pseudo-second-order kinetic model is suited for the entire adsorption process.The adsorption of Ⅴ(Ⅳ)on the composite electrode follows that of the Freundlich isotherm.Thermodynamic analysis indicates that the adsorption of Ⅴ(Ⅳ)is an exothermic process with entropy reduction,and the electric field force plays a dominant role in the CDI process.This work aims to improve our understanding of the ion adsorption behaviors and mechanisms on the composite electrodes in CDI.展开更多
An environment-friendly composite coagulant for treating drinking water was prepared by using [Al 2 (OH) n Cl 6-n ]m?[Fe2 (OH) NCl6-N ]M (PAFC), chitosan (CTS) and modified starch (MS). It is called PCS. Results indic...An environment-friendly composite coagulant for treating drinking water was prepared by using [Al 2 (OH) n Cl 6-n ]m?[Fe2 (OH) NCl6-N ]M (PAFC), chitosan (CTS) and modified starch (MS). It is called PCS. Results indicated that the best proportion of this coagulant was V (0.1%wt PAFC): V (0.001%wt CTS): V (3%wt modified starch) = 25:6:8. If compared with using traditional coagulant such as PAC, adding the novel coagulant, turbidity and the mass concentration of Al3+ in the water were decreased by 5.17% and 51.1% respectively. Rapid and slow stirring speed in Jar test were evaluated and they were founded to be slight influence. And neutral pH and room temperature allow up to 97.2% turbidity removal. Low coagulant doses reached high turbidity removal percentage, so this coagulant has obvious economic and environmental benefits.展开更多
This work aims at studying different green spaces’experiences in developed countries and extrapolates the experiences to Oromia cities in Ethiopia;in order to investigate and promote greenery infrastructure in select...This work aims at studying different green spaces’experiences in developed countries and extrapolates the experiences to Oromia cities in Ethiopia;in order to investigate and promote greenery infrastructure in selected cities.To do that greenery practice performance data were collected in four cities,which were classified into two groups as good and weak performers.As a result,Adama and Bishoftu cities were good urban greenery performers whereas Burayu and Sebeta were weak performers.The cities were also selected non-randomly to investigate the current urban greenery practice and different green areas in each city.Eight green areas were taken as samples for observation,where qualitative and quantitative data were collected from primary and secondary sources.The assessment of data confirmed that green areas along the roadside,recreational parks,open areas,and nursery sites existed in most cities.The urban plan of some cities does exclude most green area components.Greenery sites in Bishoftu and Adama are relatively better,while in Burayu and Sebeta urban greenery are highly abused for changing to another type of land use,e.g.,residential and institutional areas.The technical skills of tree planting,care,protection,and management were also observed as a collective resource.展开更多
Developing a novel photothermal catalyst for efficient mineralization of volatile organic compounds(VOCs)is of great significance to control air pollution.Herein,for the first-time,a spinel Cu_(1.5)Mn_(1.5)O_(4)nanoma...Developing a novel photothermal catalyst for efficient mineralization of volatile organic compounds(VOCs)is of great significance to control air pollution.Herein,for the first-time,a spinel Cu_(1.5)Mn_(1.5)O_(4)nanomaterial with enhanced surface lattice oxygen activation was successfully obtained by a novel light-driven in situ reconstruction strategy from its precursor(CuMnO_(2))for efficient toluene mineralization.X-ray diffraction(XRD)and high-resolution transmission electron microscopy(HRTEM)analyses confirm that the CuMnO_(2)phase was converted into spinel Cu1.5Mn1.5O4 phase under full spectrum light irradiation.Ultraviolet–visible–near infrared ray(UV–vis–NIR)spectroscopy,X-ray photoelectron spectroscopy(XPS)analysis,and density functional theory(DFT)calculations determine that the strong near-infrared absorption ability and low dissociation energy of oxygen bond in Cu_(1.5)Mn_(1.5)O_(4)are beneficial to its surface lattice oxygen activation.Furthermore,O2-temperature programmed desorption(TPD)and in situ diffuse reflectance infrared transform spectroscopy(DRIFTS)further indicate that the surface lattice oxygen of the Cu_(1.5)Mn_(1.5)O_(4)is easily activated under light irradiation,which can promote ring opening of toluene.This research endows a new design of photothermal nanomaterial with enhanced lattice oxygen activation for deep oxidation of VOCs.展开更多
基金financially supported by the National Key Technologies R&D Program of China(Nos.2011BAB05B01 and 2011BAB05B04)the Exclusive Research Fund of Environmental Protection for the Commonweal of China(No.201009013)
文摘The influence of roasting on the leaching rate and valence of vanadium was evaluated during vanadium extraction from stone coal. Vanadium in stone coal is hard to be leached and the leaching rate is less than 10% when the raw ore is leached by 4 moUL H2SO4 at 90℃ for 2 h. After the sample is roasted at 900℃ for 2 h, the leaching rate of vanadium reaches the maximum, and more than 70% of vanadium can be leached. The crystal of vanadium-bearing mica minerals decomposes and the Content of V(V) increases with the rise of roasting temperature from 600 to 900℃, therefore the leaching rate of vanadium increases significantly with the decomposition of the mica minerals. Some new phases, anorthite for example, form when the roasting temperature reaches 1000℃. A part of vanadium may be enwrapped in the sintered materials and newly formed phases, which may impede the oxidation of low valent vanadium and make the leaching rate of vanadium drop dramatically. The leaching rate of vanadium is not only determined by the valence state of vanadium but also controlled by the decomposition of vanadium-bearing minerals and the existence state of vanadium to a large extent.
基金supported by the National Natural Science Foundation of China(No.52104265)。
文摘The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in montmorillonite aerogels(3D-Mt)through vacuum impregnation to prepare 3D-Mt/PEG composite PCMs.When used as a support matrix,3D-Mt can effectively prevent PEG leakage and act as a flame-retardant barrier to reduce the flammability of PEG.Simultaneously,3D-Mt/PEG demonstrates outstanding shape retention,increased thermal energy storage density,and commendable thermal and chemical stability.The phase transition enthalpy of 3D-Mt/PEG can reach 167.53 J/g and remains stable even after 50 heating-cooling cycles.Furthermore,the vertical sheet-like structure of 3D-Mt establishes directional heat transport channels,facilitating efficient phonon transfer.This configuration results in highly anisotropic thermal conductivities that ensure swift thermal responses and efficient heat conduction.This study addresses the shortcomings of PCMs,including the issues of leakage and inadequate flame retardancy.It achieves the development and design of 3D-Mt/PEG with ultrahigh strength,superior flame retardancy,and directional heat transfer.Therefore,this work offers a design strategy for the preparation of high-performance composite PCMs.The 3D-Mt/PEG with vertically aligned and well-ordered array structure developed in this research shows great potential for thermal management and photothermal conversion applications.
基金Project(WUT:2019IVA096)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2019M662733)supported by China Postdoctoral Science FoundationProject(2018YFC1901502)supported by National Key Research and Development Program of China。
文摘Approximately 2.0-3.0 t of copper slag(CS) containing 35%-45% iron is generated for every ton of copper produced during the pyrometallurgical process from copper concentrate. Therefore, the recovery of iron from CS utilizes a valuable metal and alleviates the environmental stress caused by stockpile. In this paper, a new method has been developed to realize the enrichment of iron in CS through the selective removal of silica. The thermodynamic analyses and experimental results show that the iron in CS can be fully reduced into metallic iron by carbothermic reduction at 1473 K for 60 min. The silica was converted into free quartz solid solution(QSS) and cristobalite solid solution(CSS). QSS and CSS are readily soluble, whereas metallic iron is insoluble, in NaOH solution. Under optimal leaching conditions, a residue containing 87.32% iron is obtained by decreasing the silica content to 6.02% in the reduction roasted product. The zinc content in the residue is less than 0.05%. This study lays the foundation for the development of a new method to comprehensively extract silicon and iron in CS while avoiding the generation of secondary tailing.
文摘Seedling period is an important stage of plant growth. This research was mainly to analysis the influence of chitosan on wheat seedling growth and physiological mechanisms under drought stress. The results showed that the group coated with chitosan significantly improved the growth index such as germination rate, wet weight, root length, root active, and impacted physiological indices such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT)), the content of malwondialdehyde (MDA) and chlorophyll compared with CK under drought stress. Activities of POD, CAT and SOD increased and then decreased, the content of MDA increased under drought stress. But. variation rates of the group coated with chitosan were slower than that of CK, which indicates that chitosan can significantly improve anti-oxidant enzymes activity to clear timely active oxygen and reduce the content of MDA so as to alleviate the degree of damage in the drought stress and make seedlings grow better. The results also showed that chitosan improved chloro-phyll content than that of CK, which demonstrated that chlorophyll content significantly influenced the photosynthetic efficiency of the mutant and added wheat above ground biomass and the field experiment results showed that chitosan increased yield 13.6% than that of CK.
基金the financial supports from the National Natural Science Foundation of China (Nos. 52004194, 51874219)the China Postdoctoral Science Foundation (No. 2019M662733)。
文摘Limestone(CaCO3),which could promote sulfur fixation,was added to coal gangue during roasting in a circulating fluidized bed(CFB)boiler.CaO and CaSO_(4) were the main Ca-bearing minerals while metakaolinite was the major Al-bearing mineral in CFB slag.The effect of CaSO_(4) and CaO on the separation of alumina and silica from metakaolinite by reduction roasting−alkaline leaching process was studied.Results showed that metakaolinite was completely converted into hercynite and silica solid solutions(i.e.,quartz and cristobalite solid solutions)by reduction roasting with hematite.More than 95%of silica in the reduced specimen was removed by alkaline leaching.The addition of CaSO_(4) and CaO remarkably decreased the separation efficiency of alumina and silica in metakaolinite,which could be attributed to the formation of Si-bearing minerals:(1)Fayalite and anorthite were formed during the reduction roasting process;(2)Fayalite was stable while anorthite was converted into sodalite and wollastonite during the alkaline leaching process.This study demonstrates that sulfur in coal gangue should be fixed by treating the exhaust gas instead of controlling the combustion process of CFB to achieve the comprehensive recovery of silica and alumina from the CFB slag.
基金This work was financially supported by the Major Tech-nical Innovation Project of Hubei Province,China(No.2018ACA157)the National Natural Science Foundation of China(No.51874222)the Excellent Dissertation Cul-tivation Funds of Wuhan University of Technology(No.2018-YS-052).
文摘The aim of this investigation was to prepare geopolymeric precursor from vanadium tailing(VT)by thermal activation and modification.For activation,a homogeneous blend of VT and sodium hydroxide was calcinated at an elevated temperature and then modified with metakaolin to produce a geopolymeric precursor.During the thermal activation,the VT was corroded by sodium hydroxide and then sodium silicate formed on the particle surfaces.After water was added,the sodium silicate coating dissolved to release silicon species,which created an alkaline solution environment.The metakaolin then dissolved in the alkaline environment to generate aluminum species,which was followed by geopolymerization.The VT particles were connected by a gel produced during geopolymerization,which yielded a geopolymer with excellent mechanical performance.This investigation not only improves the feasibility of using geopolymer technology for large-scale and in-situ applications,but also promotes the utilization of VT and other silica-rich solid wastes.
基金financially supported by the National Natural Science Foundation of China(Nos.U2003129 and 51504175)China Scholarship Council(No.201706955031)。
文摘Adhesion is an important process of particle-bubble interaction in fine particle(-10μm)flotation.This paper studied the adhesion process and mechanism between nanobubbles and fine cassiterite particles by using a high-speed camera,atomic force microscope(AFM),adsorption capacity tests,and induction time tests.After being pretreated with nanobubbles(NBs)water,fine cassiterite particles flotation tests were carried out using caprylhydroxamic acid(CHA)as a collector.The results showed that NBs can improve the recovery and flotation rate of fine cassiterite while decreasing the collector dosage.The adsorption capacity test indicated that the cassiterite treated with NBs had lower demand for collector concentration.The AFM imaging results further demonstrate that NBs could reduce the adsorption of CHA on the surface of minerals.Since NBs played a part of the role of collector,it can improve the flotation effect while reducing the amount of collector.The induction time test and the high-speed camera observation test showed that NBs promoted the attachment between bubbles and cassiterite particles.On the other hand,NBs agglomerate cassiterite particles,increasing the probability of particles colliding with bubbles.
基金supported financially by the Fundamental Research Funds of Environment and Coffee Forest Forum。
文摘Dry afromontane forests are among the most poorly managed and endangered ecosystems.Therefore,we assessed the composition,diversity,and conservation status of woody plant species of the Debre Libanos church forests and surrounding forest lands in Oromiya Regional National State,central Ethiopia in 62 nested circular sample plots spaced 200 m apart along two transect lines.Large circular plots 314 m^(2)were used to sample trees with DBH of at least 10 cm,and subplots of 28.26 m^(2)were laid in each main plot were used to assess saplings and shrubs;a small subplot of 3.14 m2 was used to assess seedlings.In total,70 woody plant species belonging to 62 genera and 43 families were recorded.Of these,59,28 and 32 were in the church,government and private forest types,respectively.The most dominant families were Fabaceae and Verbenaceae,each represented by five species.In the forests considered,trees accounted for 61%,and shrubs with diameter at breast height(DBH)of 1-10 cm accounted for ca.33%.Among growth forms of woody species,shrubs and seedlings,followed by trees constituted much of the density of woody species in all the three ownership types of forests.The church forest had the most species(59)and highest Shannon(3.12)and Simpson(0.92)species diversity indices,and the government and private forests had a nearly similar total number of species and Shannon and Simpson species diversity indices.Most of the species with higher importance value indices(IVI)were indigenous in origin within the church forest(Juniperus procera=82),government forest(J.procera=66)and private forest(Acacia abyssinica=84).The composition,diversity,and population structure of woody species in the church forest were significantly higher than in the other forest lands.However,interventions of the government and private sectors to conserve forest systems in the areas,particularly the government-owned forest and specific species such as Olea europaea need active enrichment plantings due to their limited natural regeneration.Without improved management interventions,livelihood income diversification and ecosystem services obtained from the forest will not be sustainable.
基金National Key Research and Development Project of China(No.2017FB0310902)。
文摘Dense pre-hydrated geosynthetic clay liners(DPH GCLs)were manufactured as innovative materials accompanied by the advantage of lower hydraulic conductivity(k).The k of DPH GCLs permeated with de-ionized water(DIW)was 9.8×10^(−12) m/s.The effect of Cu^(2+)synthetic solution on DPH GCLs was discussed.Furthermore,the effect mechanism was studied on the basis of test technologies.A significant adverse impact on hydraulic performance of DPH GCLs is found when the concentration of Cu^(2+)is greater than 1 g/L.SEM,XRD,XRF,FTIR,and XPS analyses show that the effect of Cu^(2+)on DPH GCLs includes two steps.Firstly,Cu^(2+)interacts with hydrophobic organic matter(HOM),and the adhesion of bentonite is destroyed,and some holes appear.The Cu^(2+)contacts with bentonite directly,and Cu^(2+)interacts with bentonite through ion exchange.Passivated phenomenon occurs on the surface of the bentonite,and swelling ability of bentonite is reduced,which causes permeable DPH GCLs.
基金supported by the National Natural Science Foundation of China (51874222 and 52074204)the Fundamental Research Funds for the Central Universities (No. 2020-YB029)。
文摘The effect and mechanism of ultrasound and CaF_(2) on vanadium leaching from vanadium-bearing shale were investigated systematically.In consideration of the enhancement for vanadium recovery,the combination of ultrasound and CaF_(2)(66.28%) exerts more evident effects than ultrasound(26.97%) and CaF_(2)(60.35%) alone,demonstrating the synergetic effect of ultrasound and CaF_(2).Kinetic analysis manifests that the product layer diffusion controls vanadium leaching in ultrasound system without CaF_(2),however product layer diffusion and interfacial reaction is the rate-controlling step for vanadium leaching in other three leaching systems.The combination of ultrasound and CaF_(2) notably decreases the activation energy(E_(a)) from 62.03 to 27.61 kJ/mol,nevertheless individual CaF_(2) only reduces the E_(a) to 50.70 kj/mol.X-ray diffraction and fourier transform infrared spectrometer analyses show that the decomposition degree of the vanadium-bearing mica structure is the most significant in ultrasound and CaF_(2) system,proving the highest release degree of vanadium.Specific surface area and pore distribution combined with scanning electron microscope analyses reveal that the action of ultrasound and CaF_(2) would provide higher specific surface area,more abundant pores structure and cracks for the particles,which further prompts the rapid diffusion of H^(+),F^(-)and HF,and achieves the conspicuous improvement of vanadium leaching recovery.
基金supported by the Natural Science Foundation of Hubei Province(2016CFA078)the National Natural Science Foundation of China(51472194)~~
文摘Constructing Z-scheme heterojunction to improve the separation efficiency of photogenerated carriers of photocatalysts has gained extensive attention.In this work,we fabricated a novel Z-scheme MoO3/Bi2O4 heterojunction photocatalyst by a hydrothermal method.XPS analysis results indicated that strong interaction between MoO3 and Bi2O4 is generated,which contributes to charge transfer and separation of the photogenerated carriers.This was confirmed by photoluminescence(PL)and electrochemical impedance spectroscopy(EIS)tests.The photocatalytic performance of the as-synthesized photocatalysts was evaluated by degrading rhodamine B(RhB)in aqueous solution under visible light irradiation,showing that 15%MoO3/Bi2O4(15-MB)composite exhibited the highest photocatalytic activity,which is 2 times higher than that of Bi2O4.Besides,the heterojunction photocatalyst can keep good photocatalytic activity and stability after five recycles.Trapping experiments demonstrated that the dominant active radicals in photocatalytic reactions are superoxide radical( O2-)and holes(h+),indicating that the 15-MB composite is a Z-scheme photocatalyst.Finally,the mechanism of the Z-scheme MoO3/Bi2O4 composite for photo-degrading RhB in aqueous solution is proposed.This work provides a promising strategy for designing Bi-based Z-scheme heterojunction photocatalysts for highly efficient removal of environmental pollutants.
文摘The use of organophosphorus inhibitor is diminishing because of its toxic effects on aquatic and other life. In this study, a composite eco-friendly phosphate-free corrosion and scale inhibitor HS has been developed using hydrolyzed polymaleic anhydride (HPMA), sodium gluconate, Zn2+ synergist and sulfamic acid. And the formula ratio of each component is 9:5:4:2. The performance of the corrosion and scale inhibitor was evaluated by weight loss experiment and the static scale inhibition test, respectively. The results indicated that HS had positive corrosion and scale inhibition effect at a dosage of 40 mg.L–1 or higher. Potentiodynamic polarization curves indicated that HS inhibits the corrosion of steel based on controlling the anodic reaction. And the surface morphology of the carbon steel was studied by scan-ning electronic microscope (SEM). The inhibition effects were due to the formation of protective films.
基金financial support from the National Natural Science Foundation of China(No.51704220,No.51974216 and No.51674183)for this work
文摘Volumetric solar evaporations by using light-absorbing nanoparticles suspended in liquids(nanofluids)as solar absorbers have been widely regarded as one of the promising solutions for clean water production because of its high efficiency and low capital cost compared to traditional solar distillation systems.Nevertheless,previous solar evaporation systems usually required highly concentrated solar irradiation and high capital cost,limiting the practical application on a large scale.Herein,for the first time in this work,polydopamine(PDA)-capped nano Fe_(3)O_(4)(Fe_(3)O_(4)@PDA)nanofluids were used as solar absorbers in a volumetric system for solar evaporation.The introduction of organic PDA to nano Fe_(3)O_(4)highly contributed to the high light-absorbing capacity of over 85%in wide ranges of 200–2400 nm because of the existence of numerous carbon bonds and pi(π)bonds in PDA.As a result,high evaporation efficiency of 69.93%under low irradiation of 1.0 kW m^(-2)was achieved.Compared to other nanofluids,Fe_(3)O_(4)@PDA nanofluids also provided an advantage in high unit evaporation rates.Moreover,Fe_(3)O_(4)@PDA nanofluids showed excellent reusability and recyclability owing to the preassembled nano Fe_(3)O_(4),which significantly reduced the material consumptions.These results demonstrated that the Fe_(3)O_(4)@PDA nanofluids held great promising application in highly efficient solar evaporation.
文摘Policymakers and international organizations are making the conscious effort to address climate change through afforestation and sustainable ecosystem management. Economic activities including agriculture, mining, and infra-structure improvement to meet basic human needs continuously degrade the natural and forest resources. The rate of deforestation in Ghana is alarming due to over-reliance on forest resources by forest-dependent communities. Perceived causes of deforestation differ from individuals and groups perspec-tive. This depends on factors including environmental knowledge, education level, market demand and socio-economic activities. Simple random sampling and key informant interview with the aid of semi-structured questionnaire was used to elicit information from the indigenes of Sissala West District to determine their perceptions of causes of deforestation. The study indicated that poverty, high illiteracy, population growth and lack of alternative source of livelihood were the indirect causes which trigger livelihood economic activities such as farming, charcoal burning, wood logging and hunting leading to degradation of the ecosystem. It was also realized that majority of the indigenes are uneducated and this contributes to their unawareness of rate of de-forestation. Recommendations suggested to address challenges were enforce-ment of bye-laws and stringent government environmental policies to deter people from degrading the forest. Education, agroforestry, afforestation, and provision of alternative livelihood were also good interventions suggested.
基金Funded by the Fundamental Research Funds for Central Universities(WUT:2013-IV-001)the Ministry of Education of the People's Republic of China(No.20120143120007)
文摘The high calcium type stone coal from Hubei province was leached by water and dilute acid separately after being roasted with different dosage of Na Cl. The water leaching rate of vanadium(WLRV) was low and only 26.8% of vanadium can be leached by water when 4% Na Cl was added, but the acid leaching rate of vanadium(ALRV) was relatively high. Calcium in the high calcium type stone coal is greatly superfl uous relative to vanadium, hence, the calcium reacts with vanadium to form Ca(VO3)2, Ca2V2O7 and Ca3(VO4)2orderly during the stone coal roasting process and high temperature is beneficial to the reactions between calcium and vanadium, which was validated by simulated reactions between pure calcium carbonate and vanadium pentoxide. These calcium vanadates are all water insoluble but acid soluble and this causes the low WLRV and relatively high ALRV. After calcium removal by HCl, the WLRV is highly enhanced and reaches about 50% when only 2% Na Cl was added. If the HCl content is too high, the stone coal is easily sintered and the formed glass structure can enwrap vanadium, which leads the WLRV to decline. Single water leaching process is not appropriate to extract vanadium from high calcium type stone coal.
基金Funded by the Key Science and Technology Support Programs(No.2011BAB03B07)of the Ministry of Science and Technology of China
文摘As secondary mineral resources, diatomite tailings(DT) got from the Linjiang region of China were prepared and characterized by SEM, XRF and XRD. Mono-factor experiments were carried out to investigate the effects of the operation factor, including contact time, adsorbent concentration, initial p H value of the dye solutions, adsorption temperature and initial concentration of cationic Red X-GRL(X-GRL) on the adsorption of X-GRL. The adsorption kinetics, isotherms, thermodynamics and mechanisms for X-GRL were also studied. It was efficient for DT to adsorb X-GRL from aqueous solutions, and it was even discovered to have higher adsorptivity for X-GRL than diatomite concentrate(DC) in our previous test. The adsorption processes fit very well with the pseudo-second-order model and the Langmuir isotherm equation. In addition, various thermodynamic parameters, such as standard Gibbs free energy(ΔG°), standard enthalpy(ΔH°) and standard entropy(ΔS°) have been calculated. From thermodynamic studies, it was seen that the adsorption was spontaneous and endothermic. The main driving forces of the physical adsorption on DT are electrostatic attraction. The reason why DT showed higher adsorptivity for X-GRL than DC was that there were more clay mineral particles within, which has a remarkable ability of dye adsorption due to its high surface area. DT as a cheap absorbent for X-GRL removal would replace or partially replace the activated carbon.
基金financially supported by the National Natural Science Foundation of China(No.51874222).
文摘Composite electrodes prepared by cation exchange resins and activated carbon(AC)were used to adsorb Ⅴ(Ⅳ)in capacitive deionization(CDI).The electrode made of middle resin size(D860/AC M)had the largest specific surface area and mesoporous content than two other composite electrodes.Electrochemical analysis showed that D860/AC M presents higher specific capacitance and electrical double layer capacitor than the others,and significantly lower internal diffusion impedance.Thus,D860/AC M exhibits the highest adsorption capacity and rate of Ⅴ(Ⅳ)among three electrodes.The intra-particle diffusion model fits well in the initial adsorption stage,while the liquid film diffusion model is more suitable for fitting at the later stage.The pseudo-second-order kinetic model is suited for the entire adsorption process.The adsorption of Ⅴ(Ⅳ)on the composite electrode follows that of the Freundlich isotherm.Thermodynamic analysis indicates that the adsorption of Ⅴ(Ⅳ)is an exothermic process with entropy reduction,and the electric field force plays a dominant role in the CDI process.This work aims to improve our understanding of the ion adsorption behaviors and mechanisms on the composite electrodes in CDI.
文摘An environment-friendly composite coagulant for treating drinking water was prepared by using [Al 2 (OH) n Cl 6-n ]m?[Fe2 (OH) NCl6-N ]M (PAFC), chitosan (CTS) and modified starch (MS). It is called PCS. Results indicated that the best proportion of this coagulant was V (0.1%wt PAFC): V (0.001%wt CTS): V (3%wt modified starch) = 25:6:8. If compared with using traditional coagulant such as PAC, adding the novel coagulant, turbidity and the mass concentration of Al3+ in the water were decreased by 5.17% and 51.1% respectively. Rapid and slow stirring speed in Jar test were evaluated and they were founded to be slight influence. And neutral pH and room temperature allow up to 97.2% turbidity removal. Low coagulant doses reached high turbidity removal percentage, so this coagulant has obvious economic and environmental benefits.
文摘This work aims at studying different green spaces’experiences in developed countries and extrapolates the experiences to Oromia cities in Ethiopia;in order to investigate and promote greenery infrastructure in selected cities.To do that greenery practice performance data were collected in four cities,which were classified into two groups as good and weak performers.As a result,Adama and Bishoftu cities were good urban greenery performers whereas Burayu and Sebeta were weak performers.The cities were also selected non-randomly to investigate the current urban greenery practice and different green areas in each city.Eight green areas were taken as samples for observation,where qualitative and quantitative data were collected from primary and secondary sources.The assessment of data confirmed that green areas along the roadside,recreational parks,open areas,and nursery sites existed in most cities.The urban plan of some cities does exclude most green area components.Greenery sites in Bishoftu and Adama are relatively better,while in Burayu and Sebeta urban greenery are highly abused for changing to another type of land use,e.g.,residential and institutional areas.The technical skills of tree planting,care,protection,and management were also observed as a collective resource.
基金supported by Science and Technology Planning Project of Shenzhen Municipality(No.JCYJ20200109150225155)the National Natural Science Foundation of China(NSFC,No.92163125).
文摘Developing a novel photothermal catalyst for efficient mineralization of volatile organic compounds(VOCs)is of great significance to control air pollution.Herein,for the first-time,a spinel Cu_(1.5)Mn_(1.5)O_(4)nanomaterial with enhanced surface lattice oxygen activation was successfully obtained by a novel light-driven in situ reconstruction strategy from its precursor(CuMnO_(2))for efficient toluene mineralization.X-ray diffraction(XRD)and high-resolution transmission electron microscopy(HRTEM)analyses confirm that the CuMnO_(2)phase was converted into spinel Cu1.5Mn1.5O4 phase under full spectrum light irradiation.Ultraviolet–visible–near infrared ray(UV–vis–NIR)spectroscopy,X-ray photoelectron spectroscopy(XPS)analysis,and density functional theory(DFT)calculations determine that the strong near-infrared absorption ability and low dissociation energy of oxygen bond in Cu_(1.5)Mn_(1.5)O_(4)are beneficial to its surface lattice oxygen activation.Furthermore,O2-temperature programmed desorption(TPD)and in situ diffuse reflectance infrared transform spectroscopy(DRIFTS)further indicate that the surface lattice oxygen of the Cu_(1.5)Mn_(1.5)O_(4)is easily activated under light irradiation,which can promote ring opening of toluene.This research endows a new design of photothermal nanomaterial with enhanced lattice oxygen activation for deep oxidation of VOCs.