DEAR EDITOR,Extracellular vesicles(EVs)are important for the transport of biologically active materials and for intercellular communication.As an exposed mucosa,amphibian skin participates in many essential physiologi...DEAR EDITOR,Extracellular vesicles(EVs)are important for the transport of biologically active materials and for intercellular communication.As an exposed mucosa,amphibian skin participates in many essential physiological processes.To date,however,little is known about EVs in amphibian skin.Here,we successfully isolated EVs from the skin secretions of Bombina maxima,and characterized the EVs using nanoparticle tracking,western blotting,and electron microscopy.展开更多
Angiogenic factor with G-patch and FHA domains 1(AGGF1) exhibits a dynamic distribution from the nucleus to the cytoplasm in endothelial cells during angiogenesis, but the biological significance and underlying mechan...Angiogenic factor with G-patch and FHA domains 1(AGGF1) exhibits a dynamic distribution from the nucleus to the cytoplasm in endothelial cells during angiogenesis, but the biological significance and underlying mechanism of this nucleocytoplasmic transport remains unknown. Here, we demonstrate that the dynamic distribution is essential for AGGF1 to execute its angiogenic function. To search the structural bases for this nucleocytoplasmic transport, we characterized three potential nuclear localization regions, one potential nuclear export region, forkhead-associated(FHA), and G-patch domains to determine their effects on nucleocytoplasmic transport and angiogenesis, and we show that AGGF1 remains intact during the dynamic subcellular distribution and the region from 260 to 288 amino acids acts as a signal for its nuclear localization. The distribution of AGGF1 in cytoplasm needs both FHA domain and 14-3-3α/β. Binding of AGGF1 via FHA domain to 14-3-3α/β is required to complete the transport. Thus, we for the first time established structural bases for the nucleocytoplasmic transport of AGGF1 and revealed that the FHA domain of AGGF1 is essential for its nucleocytoplasmic transport and angiogenesis.展开更多
基金supported by the National Natural Science Foundation of China(31572268,U1602225,31872226)Yunling Scholar Program to Y.Z.,and the Basic Research of Yunnan Province(202101AT070292)to X.L.G.
文摘DEAR EDITOR,Extracellular vesicles(EVs)are important for the transport of biologically active materials and for intercellular communication.As an exposed mucosa,amphibian skin participates in many essential physiological processes.To date,however,little is known about EVs in amphibian skin.Here,we successfully isolated EVs from the skin secretions of Bombina maxima,and characterized the EVs using nanoparticle tracking,western blotting,and electron microscopy.
基金This work was supported by grants from the National Natural Science Foundation of China(30730047,81070262,81130003 and 81630034).
文摘Angiogenic factor with G-patch and FHA domains 1(AGGF1) exhibits a dynamic distribution from the nucleus to the cytoplasm in endothelial cells during angiogenesis, but the biological significance and underlying mechanism of this nucleocytoplasmic transport remains unknown. Here, we demonstrate that the dynamic distribution is essential for AGGF1 to execute its angiogenic function. To search the structural bases for this nucleocytoplasmic transport, we characterized three potential nuclear localization regions, one potential nuclear export region, forkhead-associated(FHA), and G-patch domains to determine their effects on nucleocytoplasmic transport and angiogenesis, and we show that AGGF1 remains intact during the dynamic subcellular distribution and the region from 260 to 288 amino acids acts as a signal for its nuclear localization. The distribution of AGGF1 in cytoplasm needs both FHA domain and 14-3-3α/β. Binding of AGGF1 via FHA domain to 14-3-3α/β is required to complete the transport. Thus, we for the first time established structural bases for the nucleocytoplasmic transport of AGGF1 and revealed that the FHA domain of AGGF1 is essential for its nucleocytoplasmic transport and angiogenesis.